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ABSTnACT 

In this thesis we are concerned with multiple-decision problems 

involving the selection of a variate, or of a set of variates, corres- 

ponding to the "best"  (in a specified sense)  parameter of interest, 

in a multivariate statistical context,  in the presence of nuisance 

parameters.    Our main concern is with the rational choice of sample 

size, when single-stage procedures are employed;  all problems are 

treated using the indifference-zone and subset approaches.    We require 

of these procedures that  they guarantee a stipulated probability 

requirement.     In order to determine the sample size necessary to 

achieve this objective using a single-stage procedure,  it is first 

necessary to minimize the probability of a correct selection associated 

with the procedure, with respect to the parameter'- of interest  (in a 

specified region of the parameter space)  and thu nuisance parameters 

(for all possible values of these parameters). 

Our objective at the outset of research in the present thesis 

was to provide a solution to the problem of selecting the best subclass 

of predictors for a specified subclass of variates.     (This is accomplished 

in Chapter 4.)    We soon realized that this problem is intimately 

connected with other selection problems involving covariance matrices 

iii 
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of multivariate normal distributions.    Therefore,  Chapters 2,  3 and 4 

are very closely related,  while Chapter 1,  although related to these 

chapters,   treats    a different topic. 

In Chapter 1, we consider the problem of selecting the 

varjate associated with the largest population mean,  in a multivariate 

iiormal population,  with unknown population means,  known  (unknown) 

peculation variances,  and unknown population correlations. 

in Chapter 2, we consider the problem of selecting the component 

associated with the smallest population variance,  in a multivariate 

normal population, with totally unknown parameters. 

The results of Chapter 2 are extended in Chapter 3    to some 

selection problems concerning generalized variances in Multivariate 

normal populations.    The results of this chapter involve large-sample 

(asymptotic)  theory. 

Finally, in Chapter 4, we solve (using asymptotic theory) 

two problems which have aroused recent interest in the literature. 

The first  is that of selecting the multivariate normal population 

(among independent populations), with the smallest vector coefficient 

of alienation between two sets of components.    Gupta and Panchapakesan 

(1969)  and Rizvi and Solomon (1973)  give different formulations and 

solutions for this problem. 

Secondly, and perhaps more importantly from the viewpoint of 

applications, we consider the problem of selecting the best subclass 

of predictors for a fixed subclass of variates, each of the contending 

subclasses being correlated with the subclass previously specified. 

This problem is treated in a .nultivariate normal context,  and a 

quite general asymptotic solution is displayed.    The vector coefficient 

iv 
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of alienation is used as a measure of association.    Raraberg (1969)  and 

Arvensen (1971)  obtained partial solutions for related problems.    All 

asymptotic results of Chapters 2-4 are valid under quite general 

families of multivariate distributions, although,   for simplicity,  we 

have stated them under normality assumptions. 
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HISTORICAL REMARKS 

The birth and development of the idea of treating certain 

statistical problems as decision problems is generally credited to 

A.  Wald.    His work culminated with the publication of the book 

Statistical Decision Functions  (see Wald (19S0)J. 

The first instances of multiple-decision problems,  with 

some bearing on the present thesis,  may be traced back to this period. 

In particular, we should mention the work of Paulson  (1949,   1952a, 

1952b)  who treated classification schemes, comparison with a control 

and the "slippage" problem.     Bahadur (1950) and Bahadur and Goodman 

(see also Lehmann (1957,   1961,   1966)  and Eaton  (1967a)),  proved 

strong optimality properties  for "natural" selection procedures, when 

the experimenter is interested in selecting the "best" population. 

Bechhofer (1954)      wrote a pioneering paper in which he defined 

precisely several possible ranking and selection goals as alternatives 

to classical tests of homogeneity.    In this paper,  the idea of planning 

the sample size using an indifference-zone approach with the purpose 

of guaranteeing a specified probability of a correct selection or 

ranking was set forth. 

Somerville (1954)  considered a selection problem,  with explicit 

reference to the use of the category selected after the decision 

process.    In planning the initial experiment, he considered loss func- 

tions which "take into consideration the amount of use to be made of 

VI 
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the result,   the cost of making a wrong decision and the cost of sam- 

pling".    A minimax criterion was used. 

W.  J. Hall   (1958,   1959)   introduced the notion of most economical 

multiple decision rules  (roughly,  rules which require the smallest 

sample sizes to achieve a certain objective).    He then proved the 

most economical character of some of Bechhofer's rules. 

Dunnett   (1960)  proposed selection procedures for normal  means, 

introducing prior distributions on the means, and assuming a known 

and particular covariance matrix.    After a rather complete analysis 

without  loss functions,  he introduced linear loss functions and 

invoked a minimax criterion,  as in Somerville (1954),  and other 

criteria,  such as minimizing the maximum regret. 

Gupta  (1956)  introduced the subset selection approach,   in 

which the experimenter's goal  is  to select a subset of variates,   including 

the best one.    In many practical  situations,  these may be regarded 

as  screening procedures,  to be used in the presence of a large number 

of variates, before one demands the selection of a best one. 

Much of the literature on multiple-decision (selection and 

ranking)  procedures since then has been concerned with the indifference- 

zone and subset approaches.    The most important development using 

indifference-zone ideas is perhaps the monograph Sequential  Identifica- 

tion and Ranking Procedures by Bechhofer,  Kiefer and Sobel  (1968), 

in which sequential procedures for ranking parameters of Koopman- 

Darmois populations are treated.    This book also contains a rather 

complete survey of the field.    The reader may consult it for references 

to practically all of the literature up to 1968. 

vii 
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The following papers, using the indifference-zone approach, 

are particulaily relevant to the present thesis: 

Bechhofer and Sobel (1954) considered the problem of ranking 

population variances for independent normal variates; 

Bechhofer (1968) studied ranking problems arising in connec- 

tion with multiply-classified variances and a multiplicative model 

for these variances; 

Paulson (1964) gave a closed fully sequential procedure, which 

eliminates noncontending populations, for the problem of selecting the 

normal population with the largest population mean, when the common 

population variance is known or unknown; 

Ramberg (1969) considered the problem of finding a best set 

of predictors for a specified variate, in a multivariate normal context; 

Ri-'-'i and Solomon (1973) considered the problem of selecting 

the population with the largest population multiple correlation coef- 

ficient between a specified variate and a set of variates. 

In the area of subset selection procedures, the reader is 

referred to the papers of Gupta (1965) and Gupta and Panchapakesan 

(1972) wherein there are given rather broad surveys of the main 

results, and many of the important references. 

The following papers, using the subset approach, are important 

to this thesis: 

Gupta and Sobel (1962) considered the problem of selecting a 

subset of normal variates containing the variate with the smallest 

population variance; 

Gupta and Panchapakensan (1969) considered problems of selec- 

tion in terms of multiple correlation coefficients and conditional 

generalized variances; 

viii 
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Arvensen (1971) considered the problem of selecting a subset 

of subclasses of variates containing the best predictor subclass, 

and used a Bayesian approach. 

Finally, there are several papers which employ different 

formulations for selection and ranking problems. Among these, we 

mention Fabian (1962) and Mahamunulu (1966, 1967), Recently, Gupta and 

Santner (1972) proposed a multiple-decision procedure which selects 

a subset of size not exceeding a specified upper-bound; their procedure 

bridges the indifference-zone and subset approaches. 

IX 
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STATEMENT OF PRCdLEMS 

In this sec;lun we formulate the oroblems of in erest to us 

in a general enough framework for our purposes. Let 

X = (X,,...,^) be a random vector with distribution function 

Fx('|
0.*) . where 9 = (e^...^^ and (j. ^ C^,...,* ) , each 9. 

and <|>. being unknown scalars. Our major interest is in the 9. 

while the 4». are regarded as nuisance parameters. Let 9, , <^ ... £ erui 

be the ranked values of the elements of the vector 0 . We will say 

that X.  is associated with 9. if the marginal distribution of X. 

depends on 9. and not on {9., j ^ i} .  It is assumed that no 

prior knowledge exists concerning the pairing of the 9,., with the 

X.  (1 < i,j < k) . 

Indifference-zone formulation 

Our goal, when using the indifference-zone approach, will be 

to select the variate X. associated with 9., , . For this goal, 

we permit only k possible decisions, namely "X. (1 1 i 5. k) is 

associated with 9,. , ." There are many other ranking goals treated 

in the literature, but we will consider only this one in the present 

thesis. Here correct selection means selection of the variate asso- 

ciated with 9ril  (or of any one of 9r ,,9, , 1....,9r.1 if 
[k] 7 [q]' [q+1]'    [k] 

^^g^^^g^^^aa^tmmamtmfmmammmmmmmmmmmmittm 
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e[q] = e[k] ^ 

The probability requirement associated with this goal is not 

completely formulated until a "distance" function ^(8.,9.) , between 

the marginal distributions of X.  and X. , is adopted. We assume ^ 

to satisfy: 

"Ka.b) > 0 for all pairs Ca,b) ; 

Ka.b) =0 iff a = b ; 

iHa,b) = *(b.a) ; 

iKa.b)  is strictly increasing in a for fixed b , and 

strictly decreasing in b for fixed a , 

if a ^ b . 

The specification of this distance function is fundamental 

when using the indifference-zone approach. Bechhofer, Kiefer and 

Sobel (.1968) showed that, in certain problems, the adoption of a 

particular distance function implies the nonexistence of a single or 

multi-stage procedure which will guarantee the probability requirement 

(to be defined shortly). 

The experimenter specifies real constants {Ö*,P*} , 6* > 0 , 

i/k < P* < 1 , prior to experimentation. For example, if 6. are 

location parameters in the marginal distribution of X.  (1 _< i < k)), 

we may take t|'(a,b)=a-b.  If the 6.  are scale parameters, we 

may use ^(a,b) = log(a/b) . 

When there exists a decision Rule R which guarantees the 

probability requirement. 

XI 
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inf P0   .(Correct selection using    R)  > P* 

where 

n = t(e,*)|^(8[k],e[k_1]) > 6*} , 

we say that R provides a solution to the selection problem relative 

to the distance function "^ . n is called the preference zone, and 

all parameter points not in Ü    arc said to be in the indifference- 

zone. When the experimenter adopts this approach he states in effect 

that, for all parameter points not in n , he is indifferent as to 

which decision is made. Any point  (6,41)  for which the infimum is 

attained is called a least favorable configuration of the parameters. 

Usually, we define R = R(N) , a function of the sample 

size N . Then we determine the smallest N necessary to guarantee 

the above probability requirement when RCN) is employed. 

Subset formulation 

Another possible goal is to select a subset of variates X. 

H 1 i 1 k ) containing a variate associated with 9, , . There are 

2-1 possible decisions, namely all nonempty subsets of (X.....X.) , 

When using the so-called subset approach there is no need to consider 

distance functions; instead, the experimenter specifies {?*} , 

1/k < P* < 1 before experimentation starts. Then, if correct selection 

means selection of a subset of variates containing a variate associated 

with 9-, . , Rule R is said to provide a solution to the selection 

xii 
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problem if it  guarantees  the probability requirement, 

inf IV   .{Correct  selection  using    R)   >  f" 

In  the  : nx-. 1 cii'    wr  t oils i.'.-r,   R   -   ^.^(N)     is   :i   function  of the 
U 

sample size    N   ,   and  .»I     J'   ,  whu-h   i      i   specified  "yardstick"    Our 

method will   be >io   fix     ,1*   ,   and  then   find  The  smallest    N    such  that  the 

probability  requi remcat   i.  ^uar.ii.Lccd,   ^lien    R.^lN)     is  employed.    This  i 

in contra.t   witn   ttiv  >;  .;-!   i ■■riiu.i i! .HI   at   such prublems  using  the  subset 

approach,  where    N     is  fixed and    d*     is   found to  guarantee the same 

probability requirement.     It will  be  seen that  the mathe'natical 

problems  are  equivalent,   and  our approach   is  taken   just  as  a matter 

of convenience. 

A  few words   about   notation,     correct   selection will  always 

mean a  selection   for which  the goal   under consideration  is achieved. 

PCS    denotes  probability  of a correct   selection.     a.d.     stands   for 

asymptotic  distribution.     PCS      denotes     PCS       ard     E       the operator 
a a 

expectation,  when an    a.d.     theory is employed. 

xm 
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CHAPTER 1 

SELECTION OF THE NORMAL VARIATE WITH THE LARGEST POPULATION 

MEAN FROM A SINGLE MULTIVARIATE NORMAL POPULATION 

WITH COMMON KNOWN VARIANCES 

1.0,  Introduction 

In most of the present chapter we cor.iider a k-variate normal 

population and propose single-stage procedures for selecting the 

component with the largest population mean. We assume throughout 

that the population variances are common and known. 

Section 1.1 gives certain preliminaries including a statement 

of an indifference-zone and a subset formulation of the problem, which 

we later treat simultaneously.  In Section 1.2 we consider, for 

k ^ 3 , the simple special case of equal but unknown population 

correlations. The case k = 2 is treated in Section 1.3. For 

k = 3 , we show in Section 1.4 that the theory is quite involved, but 

still tractable; exact small-sample results are obtained. However, 

for k > 3 , only tentative results are available; these are given in 

Section 1.5.  In Section 1.6 we use Bonferroni's inequality to deter- 

mine d conservative approximation to the sample size required to 

guarantee the probability requirement for the general k ^ 3 case. 

Finally, in Section 1.7, we show that Paulson's (1964) sequential 

procedure can be modified slightly to apply to the indifference-zone 

formulation of the problem described in this chapter. 

The most interesting results of the present chapter, when 

single-stage procedures are used, are the following: a) The fact 
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that the least favorable configuration of the correlation matrix 

depends on the sample size; b) Using "natural" procedures (i.e., 

the same procedures, based only on sample means, that have been used 

for independent components), the probability of a correct selection 

can attain values less than 1/k , when the sample size is small; 

therefore, these "natural" procedures are not minimax when this 

situation obtains. 

1.1. Preliminaries 

Consider a k-variate normal population X = (X.....,X.) with 

population mean vector w = (y.,...,y.) and population covariance 

2 2 
matrix o R . We assume that a  is the common known population 

variance, while R = (p..) is the unknown population correlation 

matrix. Let u r, i £ •. • £ M r, •• be the ranked values of the y. . We 

assume no prior knowledge concerning the values of the u. , or of the 

pairing of the Vr-i    with the variates X.  (1 <_  i,j <_k)   . 

Indifference-zone formulation 

The experimenter's goal is to select the variate associated 

with Pp. •, . The experimenter specifies constants {6*,P*} , 

6* > 0 , 1/k < P* < 1 , prior to the start of experimentation. 

Let PCS (y,R) denote the probability of a correct selection using 

decision procedure R , when y and R are the unknown set of 

parameters. We limit consideration to decision procedures R which 

guarantee the probability requirement: 

■MMMHMMMHMMaaaBHBHHHHMiaMHBI 
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inf PCS0(p,R)  >_ P* 

whore 

il = {(v.Rllup, ,  -  vir,   ..  > 6* ,  R a correlation matrix} 

Most of the present chapter will be concerned with single- 

stage procedures.     For such procedures,  the experimenter takes a sample 

of    N    independent vector observations,    X   =   (X    ,...,X,   ) 

(a = l,...,h)   .    The following decision rule has been proposed for 

this indifference-zone formulation of the problem: 

N 
Rule B:     Let    X.  =    T    X.  /N    (1 < j  < k)   .    Then assert that 

J       a=l     J 

the variate associated with Xr. , = max{X ,.. . ,X. } has the largest 

population mean. 

The problem is to determine the smallest value of the integer 

N for which the probability requirement is guaranteed if Rule B 

is employed. 

Bechhofer (1954) introduced the indifference-zone philosophy 

when solving the above problem for the case where R " I, , i.e., 

when all components of X are mutually independent. Our objective 

is to generalize his result in the multivariate setting. 

Subset formulation 

If the experimenter's goal is to select a subset of components 

of X which will include the component associate with u,-. , , he 

specifies {P*} , 1/k < P* < 1 , prior to experimentation. Letting 

^^^^^»MMMH^MaaMMMIMMHaaMMM 



PCSn(ii,R)    be defined as above,  we   limit consideration to decision 

procedures    R    which guarantee the probability requirement: 

inf I'CSoOi.R)   > I'*, 
ii.R        K 

The  following decision   rule has been proposed for this  subset 

formulation of the problem: 

Rule G:     Include  the component associated with    X.     in the 

selected subset  if    X.   ^ X    ,   -  d*   ,  where    d*  > 0    is specified 
3    l^ J 

in the units of the problem. 

Our task is then to determine the smallest integer N for 

which the probability requirement is guaranteed when Rule G is used. 

This rule was introduced by Gupta (1956), where the subset 

approach was first proposed. The problem solved by Gupta (1956) 

assumed R = ^ (independent components). Our objective is to genera- 

lize his result in the multivariate setting. 

In order to obtain solutions to these problems we will first 

derive some preliminary results which will be used throughout the 

present chapter. We assume, without loss of generality, that 

\  1 Wj (j ^ k) . 

Lemma 1.1.  Let 

Y1 

Xi   -X1-(Mi-yi) 

2^ l/z' ,1/2     d  *  ^ ] "tr'^-v 
Then,   for each fixed    i   ,   the     (Y.   ,   j  ^  i)    have a  standard multi- 

variate normal distribution with 

 ——~~~-~*—*—m—m 



mmmm wnmmim^mmm 

corrlY1. .YJ,)   5 YJ-,   = - 
J     J J J 2 

1-p..-p..   +P... 

Proof.    The result  follows    at once  from the above definitions, 

For simplicity of notation,  we now let 

Yj   ;:   YJ   ,     Y^   2  Y^      (1   li.j   Ik   -   1)    . 

Lemma  1.2.     Let the     (Y.   ,   j   ^ k}    be as in Lemma   1.1. 

(a)     If Rule  B  is  used,   then  in    Ü    we have 

(1.1) PCS 1 P(Y.   >  -  a(N)(l   -  P..)"172   ,   j   M) 
J JK 

where    a(N)  =  ((5*/a) (N/2)1/2   . 

(b)     If Rule G is  used,   then we have 

(1.2) PCS > P(Yj   >   -  a(N)(l  - P.^'l/2  ,   j   ?* k) 

where    a(N)   =  (d*/o) (N/2)1/2   . 

Proof. We use Lemma 1.1 and notice that, in (a) 

PCS = P(X > x. , j T* k) = P(Y. 
*   J J 

(U -y )(N/2)1/2 

>  -JL-X- ...    , j ^ k) 
a(l-Pjk) 

172 

while in (b), 

(y,-U.+d*)(N/2)1/2 

PCS = P(Xk > Xj-d* , j ^ k) = P{Y.   >  -      k J    l/2 , j ^ k) . QED 
a(l-P.k) 

r        im tl,mtmmmmmmmmmmmmma^^ 
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Our task for most of the present chapter is to minimize the 

right-hand sides of (1.1) and (1.2) with respect to R .  Formally, 

these are identical problems, and thus we will not make a distinction, 

as far as the minimization is concerned, between the indifference- 

zone and the subset approach.  The expressions (1.1) and (1.2) 

depend on ö*/o or d*/a , which may be specified, instead of 

IT alone. 

Lemma 1.3.  Let S be the size of the selected subset associated 

with Rule G. Then 

(a) E(S|u,R) I    PCY' > 
i=l   ■' 

(y -y.+d*)(N/2) 

1 1/2 

1/2 

. i M) 
ad-P..) 

where the (Y. , j ^ i) are as in Lemma 1.1, 

(b) sup E(s|u,R) = k , which occurs when y. = ... = y. , and all 
VI, R 

elements of R are equal to unity. 

Proof. This result is a consequence of previous developments. 

1.2. Case of equal correlations 

When the off-diagonal elements of R are known to be equal 

to a common unknown p  (-l/(k-l) f. P f. 1) , the minimization 

of (1.1) and (1.2) simplifies considerably.  In this case, 

Y. . = 1/2  (i / j) , and the minimum occurs when p = - 1/Ck-l) , 

in which case the k-variate distribution of X is degenerate, being 

concentrated in a linear subspace of k - 1 dimensions. However, 

the distribution of the {Y. , j ^ k} is not degenerate. Therefore, 

  ■-—-^^■"fc 



one obtains for either (1.1) or (1.2), 

(1.3)       inf PCS = ?{Y.  > -  a(N)(Ck-l)/k)1/2 , j ^ k) 

where the (Y . , j ^ k} are as in Lemma 1.1, with 

Y.. = 1/2  (i / j) . 

The infimum in (1.3)  was known to Milton  (1963)  and Gupta 

(1963).    They have provided tables for the distribution of the 

(Y ■   ,  j  ^ k)   ,  for several values of   k   .    Using these tables,  an 

experimenter determines    h = h(k,P*)  > 0  ,  such that 

P(Y •  > - h  ,  j ?< k)  = P*  ,  and upon equating 

a(N)((k-l)/k)1/2 = h  , 

a value of   N      then follows;  the experimenter employs the smallest 

integer >^ NL   . 

It should be mentioned that Rule B has many optimum properties 

when the correlations are equal.    For a large class of "natural" 

loss functions, the rule has uniformly smallest risk function among 

all symmetrical  (invariant under permutation of components) procedures, 

being minimax and admissible  (cf.  Eaton  (.1.967a),  Lehmann  (1966), 

Hall  (1959)). 

1.3.    Case   k = 2 

Although this is a particular case of the preceding section, 

we state the result explicitly, so that it may be compared easily 

with the results of section 1.4. 

^M^^N^^MaaMMMMBM* 
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Here, since   k = 2 ,   (1.1)  and (1.2)  reduce to a univariate 

normal  integral,  the minimum of which clearly occurs when   P1:> =  -  1 

Therefore, 

(1.4) xnf PCS = P(Y1 >  - a(N)2"1/2)   , 

where    Y.    is a standard univariate normal variate, 

1.4.    Case    k = 3 

Here the problem is considerably more complicated than for 

k = 2 . We wish to minimize the right-hand side of (1.1) and (1.2), 

PCS - POTj > - a(N)(l-P13)"
1/2 . Y2 > - a(N)(l-P23)"

1/2) 

over all permissible values of   ':)i2'p13'p23 ' where the    ^Yi'Y7^ 

have a standard bivariate normal distribution with 

1"P13"P23+P12 corr(Y1,YJ = Y  .-      -    u 
'■"''■"   2a-,1S

nv-'2/
n ■ 

The region of Euclidean 3-space where    R    is positive semi- 
2 

definite is given by    det R ^ 0 ,  p. . ^ 1    (i / j)   .    The region 

det R ^ 0    is the ellipsoid 

Lemma  1.4, 

1 + 2p12p13P23-p12-p13-p23^0  * 

3        —— 
r PCS > 0    for    P,, / 1    and    p0_ t 1 

 -—^ Mi—■*-*~**^-~^^~~~~-*^*^*~~~*. 



Proof.    Let ^    (y1,y2)    be the p.d.f.  of    (Y11Y2}  .    According 

to the known relation  (of.,   for example,  Plackett  (1954)), 

fv   (y,.yJ = f    (y^.y^) , 
i2 ~yu'l"2J   ^y2 \2

wi'y2 

3p 
12 

-PCS =       / 

■*m. 
I 
■jm. 

^m n-p23)1/T 

|^r fYi2^i.y2)dy1dy2 3^ 

-{    (■ 
-a(N) 

13^ 

1/2 . 

QE'J 

Some of the ideas underlying many proofs in this thesis, 

including the one above,  derive from a basic paper of Slepian  (1962). 

It is easy to check that the   inf    of   PCiT   does not occur 

when either    p       or   p        equals unity.    Hence, this case is excluded 

in the following discussion. 

Lemma  1.:,     inf PCS    occurs when    det R = 0  . 

Proof.    Suppose we fix    p..    and    p..  .     By the previous  lemma,  we 

would set    p12    at its smallest possible value, which is the smallest 

root of the quadratic equation    det R = 0  ;  thus we obtain 

P12 = p13p23-   ^2ll)l,2^22/,2>--   1   ' QED 

We proceed directly to the minimization of   PCS  .     Let us 

define the  following Lagrangean function, 

F = PCS +  X det R  . 

■ ----——i—^n^^^mg^g.—^^^^—^^_^^^Mä^l^^lmämmmmu^^^^iM^^ 
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The parameter point    R , which leads to an infinum of    PCS ,  subject 

to the restriction    det R = 0 ,  must  satirfy the following equations: 

(1.5) 
3F 
3p 12 

J 
1 

2 ' on .   a/2;. n   .1/2 2(1-P13)       (l-p23) 

+  2X(P13P23 " P^  = 0 

0lT+P1'|-PoT-l 

(       )     **U ^12    ^"^ '   (1-p^)1/2  J   4(1-P23)1/2(1-P13)3/2 

2(l-p13)3/2    -a(N) Y12     Cl-p^)^2 

(1-P23)  /2 

+  2A(P23P12 -  P13)   = 0   ' 

(1.7) ¥--  f 
<lp23        Y 

f    -Jtm -a(N) ^ P23"P12-p13-1 

12      (l-p13) (l-p23) 4(1-Pl3)       (1-P23) 

a(N) a(N) 
^.n 'YJVT-^TIK 

^«)     f 

2(1-P23)^      -MN)       Y12    1,(1-P23)1/2 

d-P^)172 

+  25:(P12P13 "  P23)   = 0   ' 

= det R = 0 

By the synunetry of equations   (1.6)  and (1.7) with respect to 

p..    and    p-, ,  one is led to study a solution of the form 

P13 = P23 = T 

which consequently implies by (1.8) and Lemma 1.4, that 

^^MMMMMMMMHMMHaMHMi 
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P12  =  2T    -   1   . 

Morouver,   by substitution,  wo  Kiiv'c    Y,-,  = -  T   .    With such a solution, 

CH|uations   (1.6)   and  (1.7)  become   identical,  and in order to find 

'    wc must  eliminate the Lagrange multiplier    X    beLween equations 

1.1.5)   and   (1.6).     After simplifications,  we arrive at, 

(1.9) 
3/2 

/ f     f    -aW/      y)dv- lililllf    f    -a(N) 
.rM. -^ n^l/2   '>Jdy a(N)       f-^T7~l -a(N)       (1-T) /2 ' ~ „1/2 

(1-T) 
172 

(l-T)"-   (1-T) 

Using the factorization f(x,y) = f(y|x)f(x) for the density 

inside the integral, and simplifying further still, we obtain. 

(1.10)  / (2Tr)'1/2exp(-y2/2)dy = (2T.)-1/2(l/b)exp(-b2/2) 
-b 

where 

b = a(N)(l + T)1/2/(l-T) 

Equation (1.10) has a unique solution,  b = .5 , which gives 

a(N)  =   .5(1  -   T)(1   .   T) -1/2 

and 

PCS -'»ri^.i-^ 
(l-T) 

=  P(Yi  > - ■5(1-T) 1/2 

(1 + T) 
TTT i =  1.2) 

    ■-  1 j t^^^^mmm^^mm^mam^^m^^^ ■MMMHUMMMMMI 
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where    corrCY, .Y ,)   = - T   , 

For numerical  evaluations of    PCS    it is convenient to start 

with a fixed value of    T    (-1 < T < 1)   ,  and then obtain    a(N)    and 

PCS   .    Some rough numerical  calculations are given in Table 1.1. 

The purpose of this  table is to illustrate the variation of   FCS^ 

;IIK1    ;I(N)    with    T   ,   rather than to provide  the   reader with a working 

device.     Table   1.1  was computed using the National   Bureau of Standards 

(1959)   tables  of the bivariate normal   integral. 

One notes that as    a(N)     increases so does    PCS  ,  as  is to 

be expected;  but as    a(N)  -*■ 0  ,  PCS    attains values  less than    1/3   . 

In other words,   for small values of    a(N)    one does better by simply 

selecting one of the three components at random rather than by using 

Rules B or G-    Therefore,  for small values of    a(N)   ,  these rules  are 

not minimax  (with respect to simple    0-1    loss  functions). 

Another curious fact is that,   for small    a(N)   ,  the least 

favorable configuration of   R    is very close to a correlation matrix 

all entries of which are equal to unity.    However,  this is also the 

most favorable configuration of    R , since then    PCS = 1  .     In other 

words,  for    a(N)    close to zero,  the  least favorable configuration of 

R    is "close" to the most favorable configuration of   R .    One may 

interpret this as happening when    a    is  large compared to    6*    or 

d*  ,   in which case our intuition fails. 

We have not been able to prove analytically that the solution 

(.1.10) of equations   (1.5),   (1.6),   (1.7)  and (1.^) which we selected 

is indeed the one which leads to the global minimum of    PC.   .    However, 

some  limited numerical results do indicate that this is in fact the 

global minimum.    We recommend that more extensive numerical 

•MMaauMMB 
mmmmimm 
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TABU:   1,1 

Values of the Infimum of the Probability of a Correct 

Selection as a Function of    T    (k = 3) 

a(N) PCS 

-.9 

-.7 

-.5 

-.2 

0 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

.9 

.99 

3.00 

1.55 

1.06 

.67 

.50 

.37 

.31 

.26 

.21 

.16 

.12 

.07 

.04 

= .00 

.98 

.83 

.69 

.55 

.48 

.41 

.37 

.33 

.30 

.27 

.23 

.19 

.13 

.04 

- - -            - --- —-  mm ———-^ -   M 
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computations be carried out in the future, and hope to do so ourselves. 

Table 1.1 shows that when   aCN) -> » , which may also be thought 

of as    N -»■ o" ,  the least favorable configuration is near 

P13 = P23 1 ,  P 12 1 . Another way to see this is to notice that 

as a(N) •*■ " , equations (1.5), (1.6), (1.7) and (1.8) become, 

2X(P13P23 " P12^  = 0 

2*(P23P12 " p13)  = 0 

2X(p12p13 " P2^  =  0 

det R = 0 

x M 

The only solutions of these equations are P-,-* -  P2T 
5: PIT = 1 » 

the most favorable configuration, and PJT = P7*   =s -1 » P12 = 1 . 

the least favorable configuration. 

1.5. Case k > 3 

In this section our results are more tentative than the results 

of the previous section,  since we have not made any numerical compu- 

tations to verify that what we obtain is indeed a least favorable 

configuration.    The present section could be written in parallel with 

the previous one,  the basic ideas being the same, except for the much 

more involved algebra.    Instead, we simply give below the main results, 

without proofs.    Let 

PCS = P(Y.  > - a(N)(l - Pjk)"1/2  ,  j / k) 

where the (Y. , j / k} are as in Lemma 1.1. 

■Mi 
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Lemma 1.6, 

9 PCS 

3oij 
> 0    for    (1 1 i < j 1 k - 1)     if    P.,   t 1    (1 < i < k -  1) 

X K 

Lemma 1.7.    inf PCS    occurs when    det  R = 0  . 

Consider the Lagrangean function 

F = PCS + X det R 

It can be shown that the equations 

|f-= 0    (lli<j  <k)   .    ^ = 0   . 

admit a solution of the form 

Plk=   •'•  = pk-l.k= T    C-K T<  1)   , 

'12 Pk-2,k-l = {^k-1)T    "  iV^"2)   • 

Moreover, by substitutioi., 

P  H Yi;j  =  {(k -  3)  -  (k -  l)T}/(2(k-2)) 

In the present context,  equation (1.10)  is a particular case of (1.11), 

when    k = 3  . 

(1.11)    /.../ fr  (z1,...,zk_2)dz1...dzk_2 

3/2 

2(2 
(fc-l)(l-0  ' exD(      i ^(N)(l-p)   i 

.)1/2a(N)(l-p2)1/2     Pt      2   (1-)C1+P)   } 

),..]  t-,   (.Wj,... ,w, _ _Jdw.... dw, ^     , 

I I I m^M^aaMtMMMMM—| «MMMMMMitMgMMjgMHBiaia 
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where the  limits of integration in the  left-hand size are from 

1/2 -1/2 -1/2 
- a(N)(l-p)       (1-T) (1+p) to    » , while the right-hand size 

limits of integration are  from 

- .•I(N)(1-2P)(1+P)
1/2

(1-T)"
1/2

(1-P)"
1/2

C2P+1)"
1/2

    to    »  .    Moreover, 

f       (i   =  1,2)     are  the p.d.f.'s of standard multivariatc normal 

distributi   is witli correlation matrices    r.   ,  where    F      has all its 

off-diagonal elements equal  to    p/(l + p)   ,  while    T     has all its 

off-diagonal elements equal  to    p/(2p+l)   . 

(1.11)  does not lend itself to an easy solution as  did (1.10) 

where we found    b    and consequently computed Table  1.1.    Although 

we have not pursued numerical computations  for    k  > 3 ,  we recommend 

that  (1.11)  be used as follows:    for fixed values  of    T 

(-1  < T < 1)   ,   (1.11)  gives a unique value of   a(N)   ;  then, with    T 

and    a(N)   ,  one computes    PCS  .    As    T    varies from    1    to    -1  , 

a(N)    ranges from    0    to   ^  ,  and    PCS    from    0    to    1  . 

Again for   k >  3 ,  the   PCS   may attain values less than 

1/k  ,  if    a(N)     is sufficiently small.     For example,  if we take 

T = (k - 3)/(k -  1)   ,   implying    p = 0 ,  then 

PCS =  {    / f(z)dz} 
-a(N) 

k-1 

where    f(z)    is a standard univariate normal  density.    For    a(N) 

very small. 

PCS = 2"(k"1)  < 1/k  . 

MdiäMLii  \ I" i -if iifiiniiiiriiiir 
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While for k = 3 we were able to show computationally, in a 

t"ow cases, that the minimum obtained is indeed a global minimum, 

Tor k > 7>      these computational results are very difficult to obtain 

because of the unavailability of tables of general multivariate normal 

integrals of dimension greater than 2 .  It may be possible that a 

proof exists for the uniqueness of the minimum, but we were unable to 

provide it. 

1.6. A conservative approximation to the sample size when k >. 5 

While expressions such as (1.11) seem to be unmanageable, a 

lower bound on PCS may be obtained using Bonferroni's inequality 

as given in Feller (1968).  Indeed, for a collection of p events 

A^-.-.Ap , 

p PEP 
P( 0   A )  =  1  - P( U   A^)   > 1 -    I    ?(AC)  =    I    P(A )  -  (p -  l)   , 

i=l i=l i=l i=l 

Q 
where   A.    is the complement of   A.   , and Boole's inequality has been 

used. 

Therefore,  since we know the minimum when    k = 2  ,  if we take 

any    k ^ 3  , 

PCS = PfYj > - a(N)(l -  Pikr
1/2 ,  i / k) 

k-1 1/9 
1   I   P(Y.  > - a(N)(l - P..)    ' ) -  (k - 2) 

i=l        1 1K 

>  (k -  l)P(Yi > - a(N)2"1/2)  -   'k - 2)   . 

■■   ■-■-   ■   III   InillMIII« I ' ■— '- ■■- .-...»:. —..■.■-.J.-,^^..».-J—^.^ ...^■„^^»»J^u_M-aiMtMM»^IMt««MUl^^M«-»J»Mll«ia 
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Sn tjnt; the right-hand side equal to P* , one may easily 

solve for :'    using tables of the standard univariate normal distri- 

bution. 

It is also possible to use the results we have for k = 3 , 

possibly in conjunction with results for k = 2 , to obtain a Bonfer- 

roni approximation. For example, suppose that k = 5 . Then, 

PCS iPlYj > - a(N)(l-p15)'
1/2 . Y2 > - a(N)(l-p25r

1/2) 

+ PCY3 > - a(N)(l-p35)"
1/2 . Y4 > - a(N)(l-p45)"

1/2) - 1 

> 2P(Yi > - .5(1 - T)1/2(1 + T)"1/2 . i = 1,2) - 1 . 

Setting the right-hand side equal to P* , with the aid 

of Table 1.1, one determines N . 

1.7. A sequential procedure 

Paulson (1964) devised a sequential procedure for the problem 

of selecting the normal population with the largest population mean, 

when the variances are known and equal. This procedure is fully 

sequential and truncated, in the sense that populations are eliminated 

as sampling proceeds and there is a predetermined upper bound on the 

total number of stages. In this section we show how Paulson's 

procedure can be slightly modified to handle the problem of correlated 

variates, when the variances are known, but not necessarily equal. 

Since the proof that this procedure guarantees the PCS over the 

preference region parallels Paulson's proof, we prove only what is 

strictly necessary and refer the reader to Paulson's paper for the 

 ■.^.■w 
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remaining details.  In what follows, we will use, as far as possible, 

Paulson's notation. 

Let (X. ,...,X. )  s = 1,2,,.. be a sequence of independent 

vectors each with a multivariate normal distribution with unknown 

population means (M.,...,^.) , known population variances 

2     2 
(o ,...,a ) , and unknown population correlations p.. = corr(X. ,X. ) . 
llv XT 15jS 

Our objective is to select, with probability at least P* , the com- 

ponent with the largest mean, whenever Wr^-i - Pr. , i ^ <5* > 0 . 

Let 0 < X < 6* be an arbitrary fixed number, and set 

—2 2 
o = max (a. + a.)  . Next define, 

i^j  1   J 

ax = [ä2/2(6* - X)] log ((k - !)/(! - P*)) , 

and W. = the largest integer less than a./X .  (Note:  Our definition 

of a  is different from Paulson's.) Then Paulson describes his 

Rule P.: "At the first stage of the experiment we take one 

observation from each variate , obtaining ... (X..,X-,,• .. ,X. .) . 

Then we eliminate from further consideration any variate j  for 

which 

X.j < max {X11,X21,...,Xkl} - ax + X 

If all but one variate are eliminated after the first stage of the 

experiment, we stop the experiment and select the remaining variate 

as the best one. Otherwise we go on to the second stage of the 

experiment and take one observation on each variate not eliminated 

r , ^-   '" •'"' 
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after the first stage.    Proceeding by induction, at the    rth    stage 

of the experiment    (r = 2,3,...,W )    we take one    observation    on 

each    variate    not eliminated after the    (r - 1)    stage,  and then 

eliminate any remaining    variate    j       for which 

r r 
£    X.    < max    {    y    X      } - a.   + rA  , 

where the max is taken over all variates left after the (r - 1) 

stage. If only one variate is left after the rth stage, the experi- 

ment is terminated and the remaining variate is selected, otherwise 

we go on to the (r + 1) stage. If more than one variate remains 

after the W. stage, the experiment is terminated at the (W. + 1) 

stage by selecting the remaining variate for which the sum of the 

(W. + 1)  observations is a maximum." 

Lemma 1.8. For each 0 < X < 6*  ,  Rule P, guarantees the probability 

requirement 

inf PCVy' R5 lp* 

where 

fi = {(M.R)|Wrkl - ^n-n 1 ö* . R is a correlation matrix.} 

Proof. It follows from the lines at the bottom of p. 176 of Paulson's 

paper that in {} , 

k-1 K-i   n      n 
P(incorrect selection) < 1   p{ 1 \    *   1 *   -a.+nX for some n < ») 

v=l  s»l1cs  s=l vs A 

uliiilir.i.irirr ir   i   ■innillTM i<ilHlllMa^^ 
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and, 

P( I  t\s-\s*V  >  ax 
for some n < » ) 

2(VVX)ax -2{6*-X)a, 
1 exp 2 2   ~ - exp I-! fL_ 

a +0,-20 a p ,      o +0-2(7 o. p . 
vk  vk^k      vk  vkvk 

■2{6*-A)a1 

1 exp 
2(6*-A)a 

(a +0i,) v v k 

— 1 exp 
Ö2 

X   1-P* 
" 1-k 

Therefore, 

P(incorrect solution) £ 1 - P* and PCS >_ P* . 

In the first inequality above we have used the fact that 

the equation 

t(Xvs-\s+A) t2 
0 = Ee   ^  J        = exp{t(Mv-Mk+X) + T C^/^^o^p^)} 

has the unique nonzero root 

tn = - 2(u -p,+X)/(o2+a1
2-2a a, p , ) 

0     ' v k -" ^ v k  v k vk^ QED 

■ - i —      -- 
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CHAFTKR 2 

SELECTION OF THE VARIATE WITH THE SMALLEST POPULATION VARIANCE 

FROM A SINGLE MULTIVARIATE NORMAL POPULATION 

2.0.     Introduction 

The problem studied in the present chapter was motivated by 

the problem posed in Section 4.3 of Chapter 4.    The asymptotic solution 

provided by Theorem 2.3 will be crucial to the developments of 

Chapters 3 and 4. 

In this chapter we study single-stage procedures for selecting 

the variate with the smallest population variance from a single 

k-variate normal distribution.    We formulate the general problem in 

Section 2.1.     In Section 2.2 we obtain exact small-sample results 

for    k = 2  .    However, when    k > 2  ,   it does not seem possible to 

extend the analysis for    k = 2  ,  as we point out in Section 2.5.     In 

Section 2.4 we show how a conservative approxima ion to the single- 

stage sample size can be obtained.    In Section 2.5 we develop a large- 

sample solution for the general case    k j> 3 .  for   k >. 3 , and 

arbitrary correlation matrix, it turns out  (perhaps surprisingly) 

that the least favorable configuration of the correlation matrix 

depends on    N , the single-stage sample size, in a very complicated 

way.    This is reminiscent of the results of Chapter 1.    The large- 

sample results of the present chapter are special cases of the results 

of Section 3.1 of Chapter 3.    These large-sample results, although 

stated in a normal framework, are valid for large classes of multi- 

variate distributions, for which Lemma 2.8 is also true. 

22 
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2.1. Formulation of the problem 

We consider a k-variate normal population with population 

2     2 
means (vi.,...,p.) , population variances (a ,...,a.) and population 

correlations p.. (1 < i < i •■ k) . We denote the covariance matrix 
ij   —   J —   ' 

by E={a..}=aRcr, where 5 = diagCa.,... ,a, ) and R = {p..} 
IJ 1 K Ij 

2 
are    k >< k    matrices.    Therefore,    a..   = a.    are the variances.    Let 

ii i 

2 2 2 the ranked values of the    a.    be    ori,  <  ... < ari ,   .    The expen- 
i      [1] -   - [k] 

menter does not have any prior knowledge concerning the values of the 

parameters of this multivariate normal population, or of the pairing 

2 
of the o with the variates. 

[i] 

Indifference-zone formulation 

The experimenter's goal is to select the variate associated 

2 
with a,., , the smallest population variance. Two constants 

{6*,P*}, e*>l, l/k<P*<l, are specified prior to experimen- 

tation. We denote the probability of a correct selection when decision 

procedure R is used by PCS«(a,R) , and restrict consideration to 

decision procedures which guarantee the probability requirement: 

(2.1) 

where 

inf PCSR(a,R) >_ P* 

~    2       2 
ß = ((5,R)|a,-, >^ 0*arii ' R a correlation matrix} 

Bechhofer and Sobel (1954) proposed the following decision 

MHMHHMMMBi 
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procedure, when considering this problem for the case R = I. . A 

sample of N independent vector observations,  (X. ,...,)L ) 

(1 £ a _< N) , is taken and one computes. 

N n 
lii  =    ^ CXia -*0'  where    Xi =    I hJH    (1 1 i 1 k) 

a=l '" QI=1 

Rule BS:    Assert that the component associated with 
2 

a,    ,   - min{a ., ... ,a,, }    has population variance    a,.,   . 

Our task is to determine the smallest sample size    N    necessary 

to guarantee the probability requirement (2.1) when Rule BS is used and 

R    is an unknown correlation matrix. 

Subset formulation 

In certain situations,  the experimenter may be interested in 

the selection of a subset of variates, which includes the variate with 

the smallest variance.    A constant    {P*}  ,    1/k < P* < 1  ,   is specified 

prior to experimentation.    Letting    PCS-(a,R)    be defined as above, 

we restrict consideration to decision procedures which guarantee the 

probability requirement: 

(2.2) inf PCSp(a,R)  > P* 
cf,R       ^ - 

The following decision procedure, proposed by Gupta and Sobel 

(1954), when considering this problem for the case    R = I,   , will 

be used: 

Rule GS:  Include the variate associated with a.. in the selected 
  ii 

subset if a.. <_ d**!.,,, , where d* > 1 is a specified constant. 



2b 

Our objective is to find the smallest sample size N which 

will guarantee the probability requirement (2,2) when Rule GS is 

employed and R is an unknown correlation matrix. 

Throughout this chapter, we assume, without loss of gene- 

2   2 rality, that a < o.  Cj ^ 1) . No consideration will be given 

to the population means, since their configuration is irrelevant for 

our purposes. 

2.2.  Case k - 2 

In this section we consider the case k = 2 , i.e., the parent 

population is bivariate normal. Writing p _ = p and 

I  = (a J) , we have 

Lemma 2.1.  The joint p.d.f. of a   and a is 

. n . n . 
ii }^   JV1    ii 

"      2 O")  %   exp(-a V/2) 
(2.3) p    (y^y,) = I   c (P) n  i i  

aira22    1 ^  j=0 J  i=l       H+j 
2- r(| + j) 

y. > o , 

where 

J r(|) j!     j=o J 

Proof.  Let A = (a. .) , a.. = T (X.  - X.)(X. - X.) . Then A 

has  a Wishart density. Make the transformation of variables a1 = a.  , 
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a22 = a22 ' rl2 = ai2ail  a22  ' and then obtain (2-3) as the 

marginal p.d.f. of (a^a ) .  Note that the joint p.d.f. of 

^ail,a22''  is a wei8htecl sum of products of gamma densities.   QED 

Lemma 2.2.  Let 

v = 
a22ö a22all 

a11a11       aiia22 

Then the p.d.f. of v is 

(2.4) 
J4-I 

Pv(^ = I    c.(p)  r(2^n)  2 zJ  2  \l  + z)-^
+2J) 

j*0 J   (r(j+n/2))^ 

I    c (p)f (z)  ,  z > 0 
j=0 J  J 

Proof. In (2.3) make the transformation 

a22ail a  = a.. , v 
11   11      a,,o 11 22 

then integrate out y    ,  obtaining (2.4) as a final result. The p.d.f. 

of v is a weighted sum of central F densities. QED 

Lemma 2.3. Define 

b = r   f.(z)dz . 
3     i/e* ^ 

Then b < b, < b„ < o — 1 — 2 — 

Proof. For j > 1 , 

in  TriririMir.ilri.ir   rii.iiii.il I '    r   I  ,tMillMtM|||tM|M|M||i||||||M<^^ 



(2.5) b. - b.., ^^ r ^'\i. 2r
(^) n. 

(r(j+-2-)ri/
0* 

dz 

LlnilL-ü. r  >J-2 (1 + z)-^2j.2)d7 

(f(^j-ij)2 i/o* 

It is easy to show that, ^f we integrate by parts the first 

integral in (2,5), and then twice integrate oy parts the second 

integral in (2.5), we obtain, 

b. - b. , 
J   J-l 

j*?-l 

QED 

If the experimenter uses Rule BS,  we obtain, 

Theorem 2.1.     The  least  favorable configuration of the relevant parameters 

2 2 
is    a[2]   =  9*a[1]   ,     p  = 0 ,  yielding. 

(2.6) inf PCS(5,P)  =    p    -^    z
2'\l  +  z)-ndz  . 

ü i/e* (r(|j^ 

Proof.  If p = ±1 , we have PCS(a,p) = 1 .  Indeed, in this case, 

X2a " ^2 = b(Xla " V  a-e- H 1 ct < N) , 

where b = oa /a     . Hence, 

22 I    (X 
a=l 2a 

7 ^2  u2 X0)  = b a 11 Taii a-e- 

resulting in 

   —   - -■■■^■■~ B 
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PCS(ä,p)  = P(an <_ a22)  = P(a^ 1 a^)  = 1 

2 2 For other values of    p  ,  and    a    > ö*a    , 

PCS(5,p)   = P(a11  < a22)  = P(v > c^/a2)   >_ P(v > 1/9*) 

=    I    c   (p)b 

Since b- = inf b. , and c„(0) = 1 , it follows that 
0  j^o J       0 

inf rCS(0,p) = hn  . QED 

Bechhofer and Sobel (1954) provide a table of values of the 

integral on the right-hand side of (2.6). For 9* and P* specified, 

the experimenter uses the table to determine N = n + 1 . 

Lemma 2.4. Consider a loss function L. (a,p) = loss when component 

i is selected and (a,p) are the parameters, such that, 

2   2 
(i) L. (a,p) <^L.(a,p) when a. > 7. ; 

2 2     2  2 
(ii) 0 1 L^a.p) = L^.Cw.p) , where ir^.ap = (ira^ira ) is any 

2 2 
permutation of ia.,a )   . 

Then Rule BS is minimax and admissible, uniformly minimizing 

the risk function among all invariant (under permutations of compo- 

nents) procedures. 

Proof. Since c.(p) >. 0 for all p , and since the gamma densities 

appearing in (2.3) have monotone likelihood ratio, invoking a result 

of Eaton (1967a) (a generalization of a theorem of Bahadur and Good- 

man (1952)), the conclusion follows at once. QED 

„   —     1 1  1 1 ilmlr -' j^^njgnggmiigniK 
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If the experimenter uses Rule GS,  we have, 

Theorem 2.2.    The  least favorable configuration of the relevant 

parameters  is 

2 2 
aril  = ar2l   '    p = 0  '  yielding, 

2-4 
(2.7) inf PCS(5,p)  =    f*      ^"J       2

2    (1  +  z)'nd2 
1/d*  (r(|))^ 

Proof. The proof parallels that of Theorem 2,1. 

Lemma 2.5. If S denotes the size of the selected subset when 

Rule GS is employed, then 

(a) E(S|5.p) = P(v > jf^-) + P(v > ^-) 
1  a 22 11 

where v  and v  are both distributed as in (2.4). 

(b) sup E(S|a,p) = 2 , when o, = 09 .  P = 1 . 

Proof.    The result  follows easily from previous developments. 

2.3.    Case    k >. 3  . 

In this section we develop some preliminary results for the 

case k >^ 3 , and outline some o; the difficulties encountered. We 

have not been able to obtain definitive general small-sample results 

when k ^ 3 . Unfortunately, the method employed for k = 2 in 

Section 2.2 fails here. In particular, it is easy to develop similar 

results to those given as Lemmas 2.1 and 2.2, but there is very strong 

evidence that the least favorable configuration of R depends on N 

 •—■—"-■ ^MMMMHHMMMMHMIIIHMMai 
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and    e*(or d*).   This will be seen in Section 2.5,  where we develop 

complete asymptotic    (N + ^    results. 

If Rule BS is used, without loss of generality, we assume 

2 2 
a    ■ 1  ,    a. = 6*  ,    j  / 1  ,  since this is a least favorable con- 

figuration of the variances.    Indeed, in    n , we have, 

PCS = Pian  < a..,j^l)  = P(o2
lX

2
n(l)  < a^U)) 

iP(X^(l) < e*x^ü),j^i) 

where x'(j)  (1 1 j < k)  are the diagonal elements of a Wishart 
n 

matrix with mean nR . 

We define 

R = 

1 lu an A12 

.^l V 
,    A = 

A21 '22. 

N 
= I 

a=l 
(xa-x)cxa-x) 

where Z .    and A   are (k-1) x (k-1) symmetric positive definite 

matrices. Then, the following lemma is stated in a slightly dif- 

ferent form in Johnson and Kotz (1972), p. 223. It provides a con- 

venient representation for the distribution function of the diagonal 

elements of A, 

Lemma 2.6. The conditional distribution of a.  given A   is 

noncentral x_ » with noncentrality parameter 

lUl22k22l22hl 

2eni-E12^r21) 
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In other woras. 

Pa     lA     (')  =    ^ ^TT P  2     (') 

2fj 

If   p.     (•)    denotes the density of the Wishart matrix 
A22 

A,,,, , we have 

(2.8)  PCS = / P(a  < a  j/l|A )p  (W)dW 
W>0        J] 22 

mm a. . 

= / PA (W) I   e X 
1
"E12J:222:21 

A      *-   k' 
W>0  22   kxO      0 

p   (u)du dW , 

where    W > 0    means    W    symmecric positive definite. 

Using  (2.8),  a tedious but straightforward computation shows 

that 

3PCS = 0    (i M).  at    R =  I, 3p. .       "     ^  r •"•   "- ^ 

One might conjecture,  in view of this  last result, and the results 

of the previous section,  that    R = Ir.    is a least favorable configura- 

tion of   R .    However,  we dot believe this to be the case for    k > 2  . 

In fact, we shall prove in Section 2.5, using asymptotic    (N ■*• <*>)    distri- 

bution theory,  that    R =  Ik    can be a saddle-point of the    PCS  .    It 

1/2 approaches a global minimum when    ceit(n)  =  (l/2)n      log 0* ->■ ~ .    When the 

.    . .1   .   I, i i i Bfi^BB^BBtmmmmammmmmmmmmiBtmmtmmmammmmmmmmmmmmmmmmmmmmmm 
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experimenter knows that the off-diagonal elements of R are equal, 

then we show in Section 2.5, using asymptotic theory, that R = Iv 

is a least favorable configuration, which does not depend on N 

and 9* . In other words, we are facing a situation similar to the 

one encountered in Chapter 1, where the least favorable configuration 

varies with the sample size. 

The same remarks are valid when Rule GS is used. 

2.4. A conservative approximation to the sample size 

In view of the difficulty of determining a least favorable 

configuration of R for k >. 3 , the following Bonferroni approxi- 

mation (cf. Section 1.6 of Chapter 1) can be used to determine a value 

of N , which will be larger than the minimum N required to guarantee 

the probability requirement. 

Lemma 2.7. If Rule BS is used. 

5-1 
(2.9)  inf PCS(0,R) > (k-1) r     ^ j  z2 (l+z)"ndz - (k - 2) . 

n i/e* crc|)r 

Hence Bechhofer and Sobel's  (1954) table may be used to 

determine a conservative value of   N « n + 1  . 

If Rul>; GS is used, a similar approximation is available, 

replacing   6*   by   d   in (2.9). 

2.5.    Large-sample theory 

In this section we develop a large-sample theory for the 

problems considered in Section 2.1. One of the results obtained 

(Theorem 2.3) will be used in the next two chapters as an important 

m^Bftmm 
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tool  for obtaining large-sample results.    We start with a version of 

the Central Limit Theorem,  stated and proved in Anderson  (1958), p.  75, 

Lemma 2.8.    Let    Xa  ,    a = 1,2,..., be a sequence of independent 

k-dimensional normal  vectors,   each with mean vector    u    and covariance 

matrix    Z =  (o..)   .     Let 

i N _ _ 
B(n)  =  (b    (n))   = n2{(l/n)    £    (Xa - y^  -  y1 - z]  , 

a=l 

where 

N 
Xx ,=    I    X /N  ,    n = N -   1   . 

ci=l 

Then the asymptotic (N •*■ «.) distribution (a.d.) of B(n) 

if multivariate normal, with zero means, and covariances 

E{b. .(n) • b. „(n)} = o.-O., + a. a, 
ij      k£.       ik j£   li  3k 

Another tool  that will be used extensively,   is given below as 

a  lemma,  the proof of which may be found,  for example,   in Rao  (1968), 

Chapter 6. 

Lemma 2.9.    Let    (Y    ,...,Y.   )   ,    n = 1,2,...   ,  be a sequence of not 

necessarily independent vector variates,  such that. 

n1/2rv fl0 Y fl0-» n      (Yln - \.--'.\n - ek) 

has multivariate normal asymptotic distribution with zero means and 

covariance matrix I .  Let gj.-.-.g  be real functions defined on 

i T Bimn - ■- --■-:'-   -- ■"—-—— — ^.-^ - .-.-^..^ ^^^^^ .w^: ^„^^„»aaa^M».^. 
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E^  ,   the    k    dimensional  Euclidean space,  which are differentiable in 

a neighborhood of    0    =   (0   ,...,0  )   ,    Then the a.d.  of 

"^^^^In-'-^kn3   " S^9?«---'9^)     (1 1 j ir)   ,   is multivariate 

normal,   with zero means,   and covariance matrix, 

^(6°)   ^   (V^ZVg.)   . 

whore 

3g. 9g 

1 k 'J (1 1 j  ir)   , 

if T.(Q'
J
)    is nonsingular. 

We shall use the notation introduced in Section 2.1, and assume, 

2   2 
without loss of generality, that a < a.     (j ^ 1) . 

Lemma 2.10.    The a.d.  of 

(2.10)    Y.  = 
J/2fl°g(a11/a    3-log(a^a^ 
n      u—T-rrr1 i 2(1 -P]/^ 

a ^ i) . 

is standard multivariate normal,  with correlations. 

corrCY-.Tj)  E Y.. 

,222 

2(1-P1
2
i)

1/2(1-Pjj)
1/2 

(i * j) 

Proof.    From Lemma 2.8,  the a.d.  of 

n1/2(aii/n - o*)     (1 < i < k)  , 

rMM^MMMMMm 
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is multivariate normal with  zero means,  variances equal  to    2o.   , 

;iiul covarianccs    Zo".   .     Therefore,   using a variance stabilizing 

transformation  (cf.   Bartlctt  and Kendall   (1946)   and Lemma 2.91,  we 

have  that 

n      (log(a../n)   -  log a.)    (1 < i ^ k)  , 

has a multivariate normal a.d. with zero means, variances equal to 2 , 

2 
and covariances equal to 2p.. . Finally, (2.10) is obtained using 

Lemma 2.9 once again. QED 

The proof of the above lemma is essentially contained in 

Ramberg (1969). Note that (2.10) resembles the distributions of the 

previous chapter (cf. Lemma 1.1). 

Let PCS  denote probability of a correct selection when 

an asymptotic (N ->■ oo) distribution function is used. The following 

is an important result for our purposes. 

Theorem 2.3. If the experimenter uses Rule BS, the asymptotic 

(N ■> <*>)    least favorable configuration of the relevant parameters is 

6*0[U = 0[2] •• = "[k] • Pij = 0 (i ^ » 

Therefore, 

(2.11) inf PCS (a.R) = ^(Y. <_ n1/2(l/2) log 9* , j / 1) , 

where the (Y.J ^ 1) are distributed as in (2.10) with 

Y.j = 1/2 (i / j) . 

 -'■-'■"■ -■■- >"--"' MMMtMküiHiaMi mmm 
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Proof. In    Ü  .if    o^ < a^     (j   j«  1)   , 

l/^,^. 2^2, n'^logCaVaf) 
l'CS(a.R)   = P(a      < a      j   ^  D   = p(Y    <   *     ,   j^l) 

> I'CYj   < n1/-,(l/2)(Joi. 0*H1  -  pp'1/2  ,   j   ^  1) 

*(Y..)(Cü*(n)fl   "  Pi2rl/2---'co*(n)(1   " Plkrl/2) 

wnero, 

and 

c.Jn)  = n1/2(l/2)log 0*  , 

CT^) - <trY..)(c2Cn)'--"clc(n)) 

c.(n) 

f(Yi.)^2' 

ceJn)(l   -  P^)"172     (j  ^ 1) 

.,yk)dy2...dyk  . 

and     f(Y..)(y2'---'yk)     is the P-d'f-  of the    iY        j  / 1}  .     Since, 

JJ-    =   2p,.fl  JJ-a 0 
8p kÄ 

ki       an2 
8PkÄ 

if all  p . = 0 , it follows that the correlation matrix R = I.  is a k* K 

stationary point of   $,      ^   .    We must show that it is a point of 

global minimum as cQi(n) -> " . 

-- ■   —*■- 
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First assume    p      ^   1     (j  ^   1)   .    We will prove that 

3^ 
(Yii) 

~  J      >  0     C£,m >  I)   . 
9p im 

Without   loss of generality,   consider    1=2,    m = 3 

(2.12) 
V.)     8Y 

Mi-     23   r
C4(n)   r

Ck(n^ f    f,       r  , 
2 2 

aP23 3p23 
-CO _oo ^ij) 2 -3V"^'4' ,yk)dy4...dyk 

>0 

since 

3Y 
23 

(1/2)(1  - 
3p 

^■1/2» ^3'-
1/2 > o 

23 

Next,  we show that,  as    c *(n) ->■ »    , 

a* 
(2.13) -^— > 0 (P J« 1) 

3p 
IP 

Without loss of generality,  take   p = 2  .    Since    p .    appears 

in the expressions of   y    ,. .. ,y ,   , we have 

...,....■. -■...-. .— - ^ -■■ . ■-J- ■  ■-"■■ft ■.--^-■.-^■--—^--^  |aa^MM^(i||MjaMa)M|||gyBjg,M|^aMM|M||<|^^ 
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(2.14)    —J^--    I 
3p 12 j=3       '2; 

p;2  fixed      9p12        3p?2 Y..   fixed 

j»3 ap12   -« 

3c, (n)    ^c^n)   .c,(n) 

tY..)^""^ j-l'  j 

yj+1.....yk)dyv..dyk 

— /j   .../^ fCYi.)
(C2(nj'y3'---'yk)dy3---dyk 

3p -* -* 

k     9Y, ac2(n) 

7 .  2    "2j   ' 2      ^2 J=3 3p12 9p  12 
Q.   • 

where 

9c2(n) 

3p 
c0*(n)(l/2)(l -  Pi2r

V2 ^ »   as    c0Jn)  ^ »  ; 
12 

CIS) 
3Y9. 

3p 12 4(l4)1/2(l-p22)3/2 
12j 

TTTTfT,   2 ,3/2 
4(1^^)       (1-P12) 

Since   M2. > 0    (j >, 3)    and   Q2 > 0 , we only have to consider 

9Y2i situations where   —f- < 0    for some   j   .    Suppose,   for instance, 
3p12 

3Y 
that 23 

3p 
j- < 0 .   This is equivalent to    X       < o .    We will show that 

12 

Q2 - M23 > 0 , which proves (2.13), in view of (2.15). 

A straightforward computation leads to 

- — ^ 1^— lim^mmmmitimmmilimtigmm^^ 
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(>4(n)"Y24C2(n)     C,k(n)_YPkC7(n) 

Q  -M      =  f(c-(n))  /4 24 2   ...   /k 2k  2 

cr3(n)"Y^3c^n) 

i     / ''       fCz^.---.zk)dz3-f(c3(n)-Y23c2(n),z4,.. .,zk)   } 

4 k 

where 

1 C2(n) 

f(C2(n))    =    ryy  exp{ r—   } 
{2-n)  ' l 

and    f    is the density of a multivariate normal distribution with 

zero means and covariance matrix which depends only on the    Y-•     (i ^ j) 

Since     *        < 0 , we have 

ce*(n)(-X123) 
c3(n1   -  Y23c2(n)  =—2     1/2        2      - -    as    V(n) -» . 

2(l-p13)       (l-p12) 

showing  that    Q2 " M23 > 0   •    This'   in turn'   implies  (2.13) 

 - ■■'■—-■—"-—•'—^■- «MMMMMiMMMaMaHMIiHIIMlliaHBHHHHMHMMHMHaHHMHHIHaMaailH 



PWWwnwwpPW>»WPwwiWFW»wpw 

40 

Equations (2.12) and (2.13) imply that 

*(Yij)
(c2Cn) ck(n)) ^*(i/2)(ce*(n)'---'ce*Cn)) 

This last  lower bound is achieved when    P..  = 0    (i /  i)   . 

2 
proving   (2.11)   when    p   .  ?* 1     (j   j<  1)   . 

2 
Let    J =  U,,...,jj}  ,    1 £ J   .    Assume that    p   .  = 1   ,  j € J 

Using an argument similar to the one employed in the proof of Theorem 

2.1,  we have, 

all =  (0l/öj)aJ3    a,e"     (j € J) 

2        2 Therefore,   for such an    R ,   if   a    < a.     (j  ^  1)  , 

PCS = P( H (a   <a    )) = P( n (aJ<oJ) ,   fl (a. <a..)) 
j>l    11    JJ J€J    1    J      j^J    11    " 

Since,   for any    R  , 

P( n (a..  < a   )) >.P(n (a      < a    )) 
j^J    11        JJ j>l     11        " 

_~~— mi-ini i    Mi M^MMBMMMMMMM^aBMMMMBaaMaaMgMaMMg^^M^ai^aMa^gaaMMMai^aaaaBMMBMMMlMBM 
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it is  seen that    p      = 1  ,    j £ J    does not  lead to the infimum.    QED 

Theorem 2.4.    If the experimenter uses Rule GS,  the asymptotic 

(N -*■ a')    least favorable configuration of the relevant parameters is 

'k  ' Pi:j  =  0     (i / j) 

Therefore, 

(2.16)     inf PCS   (5,R) = P(Y    < n1/2(l/2) log d*   ,  j M)   , 
■» J 

where  the     {Y.   ,   j  /I}    are as in Theorem 2.3. 

Proof.    The proof is similar to the proof of Theorem 2.3. 

Lemma 2.11.     If    S    denotes the size of the selected subset when 

Rule (IS is employed, wc have asymptotically    (N -^ «O   , 

i    1/2 2  .-l/21„„f^ 2. 2, (a)     l:a(S|5.R)   =     I P(Y <n1//{l/2)(l-p^  )"1/Zlog(d*a'/ap   ,   i /  j) 

where the (Y. , j ^ i} are distributed as in (2.10) with i in 

place of 1 . 

(b)    sup E (S|a,R) = k when a2 = a2 (i ^ j) , R 
a i   j 

1 ... 1 

1 ... 1 

Proof.    Consequence of previous developments. 

Theorem 2.5.    Suppose that    p. .  = p    (i  ^ j)   , where    p    is unknown, 

Then, 

(a)     If Rule BS is used,  an asymptotic     (N + «)     least favorable 

 —~— " ■   ' ~~--~~-~~~-~~~~-~~~~-~-~*~»'m~m***-~m 
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configuration of the relevant parameters is 

^[l] =a[2] = '•• =a[k] '  p = 0 ' 

(2.11)  being pertinent; 

(b)     If Rule GS  is used, an asymptotic     (N ->. »)     least favorable 

configuration of the relevant parameters is 

2 2 öj = ... =ak  ,    p =  0  , 

(2.16)  being true. 

Proof. This follows directly from Lemma 2.10, without the need for 

further arguments. 

There is evidence that the approximation used in Lemma 2.10 

is very good, even for small values of N . The reader may consult 

Bechhofer and Sobel's (1954) tables where some comparisons are given. 

Hence, we would conjecture that Theorem 2.5 provides an excellent 

approximation to N , even for relatively small values of N . As 

for Theorems 2.3 and 2.4, we have used the fact that N is large 

in a stronger manner, but still it is expected that moderate values of 

N would provide a very good approximation to the small sample 

results. We would expect that the approximation will be an excellent 

one if P* and 6* are close to unity. Values of N may be deter- 

mined using formulae (2.11) and (2.16) in conjunction with the tables 

of Gupta (1963) or Milton (1963). 

We next explore the behavior of *,  -.in the vicinity of 
(Y.j) 

R = I. .  It is easy to compute, from (2.12) and (2.14), that at 

R=Ik. 

- ■   -■  •"—fM—nafrgygngm^!^ 
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:)(, 
im 

>  0       (£,ni >  1) 

IM, 

"V,, 
-h R=I. 

4   J     ••• i      f(i/2)(ce*(n)'ce*(n)'y4"--' yk)dy4...dyk 

c
fl*(

n)    c.0*(n)    c0 rn) 9* rQ* rQ*      ■ 

'       •■•   f        fr^/7^tC(i*M^y^.^^^>yJdyT■^dy (1/2)^9 kJ   '5' 

Therefore, 

(j  >  1) 

3* 
(V^ 

< 

0    if    ceJn)   =  0  , 

R=I. 

and > 0    if    r    (n) ■+ 

In other words,   if    c     (n)    is sma.1.! enough,     *f      .    has a saddle- 
lYijJ 

point at    R = I,    ,  while as    c    (n)    increases it will have a local 

minimum there,  and eventually a global minimum. 

Finally,  we show that    PCS      can be  less than    1/k  , as was 

also the case in Chapter 1.    Note that    1/k    is the  lowest possible 

value for the    PCS    when    R = I.   .    Take    k =  2  , 
k 

2    2 
P12 = P13 = 1/2 '  P23 = 0 " Then'  Y23 = 0 and 

PCS 
c (n) c (n) 

/     /    Wy^y^y-A,a 1/4 < 1/3 
-00      _00 (0)^2^3^UJf2u/3 

if c
e*(

n) = 0 

 . .  
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CHAPTER 3 

SELECTION OF A SUBCLASS OF VARIATES WITH THE SMALLEST POPULATION 

GENERALIZED VARIANCE FROM A SINGLE MULTIVARIATE NORMAL 

POPULATION (ASYMPTOTIC THEORY) 

3.0, Introduction 

In this chapter we study selection procedures in terms of 

population generalized variances associated with subclasses of variates 

from a single multivariate normal population.     In Section 3.1 we 

consider disjoint subclasses and the results obtained are extensions 

of the results of Section 2.5 of Chapter 2.     In Section 3.2 we consider 

intersecting subclasses.    Many other selection problems in terms of 

generalized variances may be treated using the ideas of the present 

chapter.    We decided to restrict consideration to these two particular 

problems,  since they illustrate well the methods we propose.    For 

instance,   it  is easy to extend these results  to selection problems 

involving subclasses of different sizes.    Throughout the entire 

chapter,  the theory developed is asymptotic  (large-samp1e),  and could 

he stated in a more general framework than normality. 

3.1. Selecting the smallest population generalized variance  (disjoint 

subclasses) . 

Consider a kp-variate normal population, with unknown popu- 

lation mean vector and unknown population covariance matrix. 

44 
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where    5".      U  1 j £ k)       arc    p x p    .symmetric positive definite 

matrices.    The quantity    det  £.     is referred to as the population 

generalized variance associated with  the     ith    subclass of variates 

fl   <   i   -^  k)   .     Let     det   5:f]1   <   ...   < det  T. r. ,    be the  ranked values 

of the    det  I.     (1   <^ i  < k)   .     It  is assumed that no prior knowledge 

exists concerning the  values of    det  Z.     H 1 j  £ k)   ,  or of the 

pairing of    det    Z...     with the subclasses of variates. 

Indiffcrcncc-zone  formulation 

The experimenter's goal  is to select  the subclass of variates 

associated with    det  Z     ,   .    He specifies     {9*,P*}   ,     6* >  1  , 

1/k  <  1'*  <  1   ,   prior to the start of experimentation.     If    PCS  (E) 

denotes  the probability of a correct selection when  decision procedure 

R    is employed,   we  restrict consideration  to procedures    R    which 

satisfy the probability requirement: 

inf PCS.m  > P*  , 
Q K - 

where 

fl|det £.  > •    det E        ,  J  ?   [1]) 

In this chapter we propose "natural" single-stage selection 

■Ml 



mmmmmm 

■16 

procedures,  which associate sample quantities with the corresponding 

population parameters. 

A sample of    N     independent  kp-vector observations, 

X    =  (X    ,...,X.       )     (11« 5 N)   ,   is taken,   and the sufficient 

_ N N 
statistics     (^.S)   ,       XN =    £ Xa/N  ,    S =    I  <i*a -  ^ (\ - \)  /n  ,- 

a=l a=l 

n = N -   1   ,  are obtained.     Let    S    be partitioned according to    £  , 

in such a way that    S.     corresponds  to    T..     (1  <^ j  £ k)   ,  and 

S. .    to    E. .     (i ^ j)   .     For this indifference-zone goal, we adopt 

the following decision rule: 

Rule R„M :     Assert  that the subclass associated with 
UV 1 

dot S, , s min det S. , has the smallest population generalized 

variance, det E r . . 

Our objective is to determine the smallest sample size N 

such that Rrv  will guarantee the probability requirement. 

When £..=£*  (i j^ j) , R v,  is minimax, and also has 

uniformly smallest risk for a class of natural (invariant) decision 

procedures and loss functions (cf. Eaton (1967b)). 

Subset formulation 

If the experimenter wishes to select a subset of subclasses 

containing the subclass associated with det E. , , he specified 

{P*} , 1/k < P* < 1 , prior to the start of experimentation. If 

PCSp(I) has the same meaning as above, we restrict consideration 

MMHMUtaiaUliMiartMM  iiiiiiinr iti<MtMM|igMM|a||g 
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to decision procedures    R    which satisfy the probability requirement: 

inf PCS  (>:)  > I'* 

goa 1: 

We propose the following decision procedure  for this subset 

Rule RpV-,:     Include the subclass of variates associated with 

S.    in the selected subset  if    det S,  < d* det S,,,   ,  where    d* > 1 

is a specified constant. 

Our objective is  to find the smallest sample  size    N    which 

will  guarantee the probability requirement when   R„.,0    is employed. 

Gnanadesikan and Gupta  (1970)  studied   R ™.-    for the case 

where    3^. .   = 0    (i   ^  i)   . 
ij J 

We disregard the population means in what  follows,  since they 

.ire irrelevant  in our problems.    We assume,  without   loss of generality, 

that    det E,   < det  Z.     (j  ^  1)   , 

The following  linearization result,  proved in Siotani and 

llayakawa  (1964),  and which goes back to Olkin and Siotani  (1964), 

will be used extensively in this and the following chapter. 

Lemma 3.1.     Let    Li    be as above,     Z =  (a    )   ,  and    f. (S)   ,  j €  J  , 

.1    a finite set,  be real  valued functions of   S  ,  not algebraically 

dependent,  having first and second derivatives in a neighborhood of 

Z    (in the topology inherited from    E °  ^ -" ^  ) .    Then,  the a.d. of 

n1/2(f.(S)  -  f.m)   (j 6 J) 

i i   - ^M—w-iBr ■IMMUHM 
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is multivariate normal with zero means, variances equal to 

2 2 
2(f.(E)) tr 0.(j:)E)  Cj € J) . and covariances equal to 

2fj(J:)fi(J:) tr (fjCJ:)E<J.i(E)Z (ij € J) , where 

aa3 = (1/2^1 + V^ 

aß 
1 if a = 

aß 

0 if a ^ 

Lemma 3.2. The a.d. of 

1/2 
n  (det S - det ^.....det S, - det E, ) 1       1        k      k' 

is multivariate normal, with zero means, variances equal to 

2p(det E.) , and covariances 2 det I.  det £. tr E. I..E. E.. . 

Proof. This lemma is a consequence of Lemma 3.1.  Using the notation 

peculiar to that lemma, let f.(E) = det E. . Then, it is known 

(cf. Anderson (1958), p. 347) that, 

^(E) = 

,-1 
1 

0  0 

LO  0 

0  0 

0 

OJ 

*2(Z) 

0 0 cf 

0 
^ 

0 

0 0 o_ 

Noticing that 

    -- - 
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trC^OOSr = tr 

tr ^^1)1^(1)1 = tr 

0 0       .. 

IP 0       .. 

1 Z"1! 
p 1     12   •• 

0 0       .. 

0 0 

1    IK 

0 

0   j 

0 

o  J 

= p 

0 0 

2    21      p 

Loo 

= tr ''IWlhl   ' 

0 

E2l!:2k 

0 

the present lemma follows at once. 

Hooper (1959)  defined 

QED 

U    .-1, 
'u = (1/p) tr VVj'n 

as the squared trace correlation coefficient between subclasses 

2 2 
i    and    j  .    If   v      ,...,v are the canonical correlations  (cf. 

Anderson (1958)) between the two subclasses,  it can be shown that 

^= J. v'Vp • 
wnich implies 

0<p.. <1 . 

Lemma 3.3. The a.d. of 

i        wo    log(det S./det S.)-log(det I./del E.) 
(3.1)    Y! = n1/2{  1 J      2 

1 i- }     (j ^  1)   , 
J 2p1/2(l-pJ.)1/2 

i^^M^^^M^MM^üMHMMMMIIMaHMI 
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is standard multivariate normal,  with 

corr(Yj.YJ) 

!   ^2       2       2 
l-P^-P, .+P. . 

13 2(1-0^1 2 OT^  J\l/2    » * » tl-P^) 

Proof.    This follows using Lemma 2.9 of Chapter 2 and Lemma 3.2 above. 

Theorem 3.1.    If the experimenter uses Rule R-..   ,  an asymptotic 

(N ->- °°)     least favorable configuration of the relevant parameters 

is 

det Z./det ll    = 9*     (j  / 1)   .    Z.. = 0    (i / j) 

Therefore, 

(3.2)        inf PCS fZ)  = P(Y!  < n1/2( 1/2, 
n a—        '(Y. ln^(l/2)p^"-log 9* ,  j ?« 1) 

where the    {Y.  ,  j ^ 1}    are distributed as in  (3.1)  with 

Yij   = 1/2     (i * j)   • 

Proof.    Using Lemma 3.3,  we have for    det Z . >_ 6* det Z       (j  ^  1)   , 

PCS   (Z)   =  P(det S    < det S.   ,   j   ^  1) a i j 

= P(Yj < n1/2(l/2)p":i/2(l-Pj.)"1/2log(det Z./det Zj)   .   j ^ 1) 

LP(Yj  < n1/2(l/2)p"1/2(l-p2.)"1/2log 9* ,  j  ^ 1)   . 

We can now use Theorem 2.3 of Chapter 2,  and set    p..  = 0    (i ?< j)   , 

to obtain a  lower bound on    PCS  (E)   .    Since the parameter configuration a 

det Z    = 9* det Zj    (j  / 1)   ,     Zi.  = 0    (i / j)   ,   leads to this 

— ^MM^M^M 
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lower bound,   it  is a least  favorable configuration. 

It is easy to show that    ^..  = 0    (i ^ j)   ,  is also necessary 

for an asymptotic   least  favorable configuration.     Indeed,   if 

-> 
pT.   = 0   ,   then    £..   = 0    necessarily,   from the definition of squared 

trace correlation coefficient QED 

Theorem 5.2.    If the experimenter uses Rule R^..^,  ^n asymptotic 

(N -+ co)     least favorable configuration of the relevant parameters 

is    £=...=£,,     E..  = 0     (i ^ j)   .    Therefore, 

(3.3)       inf PCS  fS)   = PCvJ  < n1/2(l/2)p"1/2log d*  ,   j  t I) 

where the    ^Y.   ,  j  ^ 1}    are as  in Theorem 3.1. 

I'roof.     The result   follows  immediately from Theorem 5.1. 

I.oimiia 3.4.     If    S    denotes  the   size of the selected subset  of sub- 

classes of variatcs when    R,^,-,     is employed,  wo have 
dV z 

(a)  Ha(Sll) I    P(Yj < n1/2(l/2)p"1/2(l-p2 )'1/2log(d*det E /det Z)   , 
i=l   ■' ■> 3 

i ^ j) 

where the iY. , i ^ j} are distributed as in (3,1) with 1 replaced 

by i . 

(b) sup E (S|2) = k which occurs when I  = 
E  a 

I     ...   I 
P P 

I     ...   I 
I P PJ 

Proof.    The result is a coneequence of previous developments. 

mmmm^mtm^tmmamitm 
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It is interesting to note that Theorems 3.1 and 3.2,  and Lemma 

3.4 reduce to Theorems  2.3 and 2.4,  and Lemma 2.11  of Chapter 2, 

respectively,  when    p =  1  . 

3,2.     Selecting the smallest population generalized variance 

(intersecting subclasses). 

The last problem of the present chapter is a problem of 

intersecting subclasses of variates,  where some variates belong to 

more that a single subclass.    We start by proving a lemma,  which will 

be basic to what follows. 

lomma  3.5.     Let    X^ =   (X^.X^.X^)     (1  < ct < N)   ,  be independent 

normally distributed     (p.+p:,+p-)-vectors,  with unknown population 

means  and unknown population covariance matrix 

Z  = 

A D E 

D1 B F 

E1 Ft C 

where    A(p1   x p,)   ,     B(p9 x p.,)     and    C(p7 * p,)   .     Define, 

Xk<.=   1*\AJ   ■    "ka-   ^2A     »I«!«   • 
N N 

:'l2  =    ^   X12,a
/N '     X23 =    \   X23,a/N  ' 

a=l a=l 

TT      .t 
;12= ^   fX12,a-X12^X12.a-  X12^/n'     " 

N  -   1   , 

S23  = ^   fX23,a -  V^,«  -  ^^ 

'12 

A        D 

Du       B 
.     X 23 

B F 

F1       C 
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Then, the a.d. of 

1/2 
n  (det S12 - det I      , det S  - det Z„) 

23 2y 

is multivariatc normal, with zero means, variances equal to 

1 2 
2(P1

+l>2)(det?;i:r and lip^p^) (detZ^)     ,  and covariance 

J(p-,+A)dct };j,2Jet 5:^ > where X ^ 0 is defined in the course of the 

proof. 

Proof.  Using the notation of Lemma 3.1, we obtain,  f.■(H = det £.. 

(1 < i < j 1 3) , 

*12m 
hi     o 

0   0 
*25(Z} 

0   0 

-1 
0  I. 

23 

The expressions  for the variances  follow immediately.     Now we define. 

n--i 

hi 
'l2(u) 

1^1} 

fA-mrVr1 -(A-DB^D^^DB"1 

1 
E12(M 

'23 

1, .-i 
Z23^ 

Vz^ 

Z23^ 

(C-F^^F)"1?^"1 (C-FVVi 

In order to compute the covariance we must evaluate 

  — —-—-———" 



tr *l2WZ*2?,(Z)l 

tr 0 
0     0     Ü 

E12        l! 

'  I 0      E^ful^l   1 P1 12
,-unF; 

ooo 
o 

] 
0     L 

= tr 1 An^   fPA o      i     rV^R 

0 0 

23 

0 

f A    D    I: 

Et      2i 

0 0 

0 

I 
P3  J 

? = P2  +  trV^(u)fF]z-l, 

= p2   *  tr(A-DB-1Dt)-1(E-DB-1F)(C-FtB"1F)-1(Et-FtB-1Dt) 

P2 +  X 

Hooper  (1962)  defined 

13.2 = VPj   , 

as the squared partial trace correlation coefficient between subclasses 

X      and    X      conditional  on    X    .     If    p    < p      (say)  and 

2 2 
vT.^'-.v        are the canonical correlations between    X.     and    X_ 

1 pj 13 

in the conditional distribution of    X      and    X      given    X    ,   it  can 

be  shown that, 

2 *     2 
P13.2  =  Jj  VPl   ' 

which implies, 

  1—i—   1 ■—* 
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Hence, 0 £ A < p . QED 

We note in passing that X = o if D , E and F are zero 

matrices. 

In this section we consider X =» (X ,..,,X,) a k-variate 

normal population, with unknown population mean vector, and unknown 

population covariance matrix I.    We assume k >_ 3 . Consider all 

possible subclasses of specified size t  (t < k) of X , whose 

total number is U»( J . Let £,...,£  be the covariance matrices 

(submatrices of E ) corresponding to these U subclasses, and let 

det ^M-I 1 • • • 1 det Erm be the ranked values of det E.  (1 1 j 1 U) 

It is assumed that the experimenter has no prior knowledge concerning 

the values of det E.  (1 £ j £ U) , or of the pairing of the 

det Er.n with the subclasses of variates. 
[i] 

Indifference-zone formulation 

The experimenter's goal is to select a subclass of t variates 

out of the k-variate population, with the smallest population genera- 

lized variance, det E . . He specifies {e*,P*} , 6* > 1 , 

1/U < P* < 1 , before experimentation starts. If PCSj,(E) is as 

defined in Section 3.1, we restrict consideration to decision procedures 

R which guarantee the probability requirement: 

inf PCS0(E) > P* 
o    K   — 

^^mmm^t^^mmttlmgll0mmmmmitimtimtmtmtii 



mm 

56 

where 

ü =  {j:|e*dct E^,  < det I.   .    j  /   [1]}   . 

We propose the following decision procedure  for this indif- 

ference-zone formulation of the problem; 

Rule R^r,:     Let    S    be the sample covariance matrix computed 

using a sample of size    N    from the above population,  as in Section 

3.1.     Let    S.     (1 £ i £ U)    be submatrices of    S    corresponding to 

^i     (1 £ i £ U)   .    Then assert that the subclass of    t    variates 

associated with    det Sril  = min det S.    has  the smallest population 
[1] j 

generalized variance, det £..., . 

Our task is to determine N which will guarantee the proba- 

bility requirement when R™,7 is used. 

Subset formulation 

If the experimenter is interested in selecting a subset of 

subclasses of variates, which includes the subclass associated with 

det Z   , he must specify {P*} , 1/U < P* < 1 , before experimen- 

tation starts.  If PCSp(E) has the same meaning as a'iove, we 

restrict consideration to decision procedures which guarantee the 

probability requirement: 

inf PCSn(J:) > P* 
E   *   - 

For this subset formulation, we propose. 

^inr iiiiinrMir m^H 
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Rule R~,,:     Include the subclass associated with    S. 
 GV4 j 

U 1 j 1 U)   ,   in the selected subset of subclasses of variates if 

dct S.  £ d*det S,.,   , where    d* >  1    is a specified constant. 

Our task  is to determine the smallest sample size    N   which 

will guarantee the probability requirement when    Rpy,,    is employed. 

Due to the symmetry of the present problem, we may assume, 

without  loss of generality,  that    det E.  = det  Iril   ,    Moreover, we 

give no consideration to population means  in what  follows,  since 

they are irrelevant for our problems. 

Lemma 3.6.    The a.d.  of 

n1/2(det S    - det £,...,det S    -  det E ) 

is multivariate normal with zero means,  variances equal to 

2 
2t(det I.)       (1 < j  < U)   ,  and covariances    2(t. .  + X. .)det E.  det Z. 

H 1 i < j  £ U)   ,  where    X. . ^ 0    (defined in Lemma 3.5),  and 

t. .    is the number of common variates of subclasses    i    and    j 

(corresponding to    S.    and    S.  ). 

Proof.    This  result  is a consequence of Lemma 3.5. 

We define. 

P2.   =  (t. .  + X..)/t    (i t j)   ,    t../t < p2.  < 1   . 

Lemma 3.7.    The a.d.   of 

i   wo log(det S /det S.)-log(det E /det I.) 
(3.4) Y = n1/2{  1 l/2 

J 2 l/2 
l- L- } 0 M) , 

M^ttliailBMti MHMaaaaMMkaaMMMi 
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is standard multivariate normal with 

2       2       2 

corr(Y  .y )   sy      = ll ■  ^    ^ 
1     ■• 1J       2  2    1/2 2     1/2       (1  ^  J) 

Proof.    The result  follows using Lemma 3.6 and Lemma 2.9 of the 

previous chapter. 

Theorem 3.3.    When one employs    R        ,  an asymptotic    (N -> <»)    lower 
—~——^^ (jV3 

bound on the    PCS,     is  given by: 

(3.5)       inf PCS   fE)  1 P(Y^  < n1/2(l/2)t"1/2log 6*   ,   j  /  1) 
Ü a -        j 

where the    (Y.   ,  j  ^  1}    are distributed as in  (3.4)  with    y..  = 1/2 

(i ^ j)   .    When    t =  1   (resp.    t = k -  1 )     lower bound  (3.5)  is 

sharp,  and an asymptotic least favorable configuration of the relevant 

parameters is    E = diag(l,e*,...,9*)     (resp.    Z = diag(e*,l,...,1))   . 

Proof.    The proof of this theorem is similar to the proof of Theorem 

2.3 of the previous chapter. 

Theorem 3.4.    When one employs   R,-,.  ,  an asymptotic    (N -> «0    lower 

bound on the    PCS      is given by: 

(3.6)       inf PCS  (Z)   > P(Y^ 1 n1/2(l/2)t'1/2log d*   ,   j  ^  1) 
Z a 3 

where the    (Y.   ,  j  ^  1}    are as in Theorem 3.3. 

When    t=l    or    t = k -  1  ,  lower bound  (3.6)   is sharp, and 

as asymptotic least  favorable configuration of the relevant parameters 

is    I = diag(l, ...,1)   . 

 ■-• —- -  --~-^ 
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Proof. The proof of this theorem is similar to the proof of Theorem 

2.3. 

Lemma 3.8.  If S denotes the size of the selected subset of sub- 

classes when R™,. is used, 
GV4 

(a) Ea(S|z) 
k n1/2log(d*det I./det  I.) 

I    P(Yi ^ 172 2^172 - 
i=l J 2ti/^l-p' )i/^ 

,  i / j) 

where the    (Y.   ,   i ^ j}    are as in (3.4)  with    i    in place of    1 

(b) sup E  (Slz)  = k    which occurs when    T. = 
I      a 

1   ...   1 

1  . ..   1 

Proof.    The result  is a consequence of Lemma 3.7. 

 - mmilM^m -»^ ^^—miim , ^^^^^^^^^.^^^^^^^^ 



CHAPTER 4 

SLLIiCTlON OF SUBCLASSES OF VARIATES OR OF POPULATIONS 

BASED ON MEASURES OF ASSOCIATION BETWEEN TWO 

SUBCLASSES OF VARIATES  (ASYMPTOTIC THEORY) 

■1.0.     Introduction 

In the present  chapter wc consider two problems which have been 

studied recently by several  investigators.     We provide solutions to 

these problems using asymptotic theory. 

Section 4.1  contains certain preliminaries  and definitions 

employed in the   later sections.     In particular,  we define a measure 

of association known as the vector coefficient of alienation between 

two classes of components.    Then,  in Section 4.2, we consider the 

problem of selecting a multivariate nomal population  (among independent 

populations)  with the smallest vector coefficient of alienation be- 

tween two classes  of components.    Gupta and Panchapakesan   (1969) 

and Rizvi and Solomon   (1973)   give different   formulations  for this 

problem. 

In Section  4.3,   we consider the important problem of selecting 

the best subclass  of predictors  for a fixed subclass of variates, 

each of the contending subclasses being correlated with the subclass 

previously specified.     A quite general asymptotic solution is displayed. 

The vector coefficient of alienation is used as  a measure of asso- 

ciation.    Ramberg   (1969)   and Arvensen  (1971)   obtained partial results 

for related problems. 

Although the problems are formulated in a multivariate normal 

framework,  the same asymptotic results are valid for a very general 

60 
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class of multivariatc distribution  functions. 

•J. 1,     Preliminaries 

In this  section wc describe a  few properties of certain measures 

of association between  two sets of variates.     For further details 

the reader is referred to Hotelling  []97<6)  and Hooper   (1959,   1962). 

Let     (Y,X)     be a   (q  + p)-dimensional  random variable with 

covariance matrix 

I  = 
y    yx 

z      z 
I xy  xj 

2     2 
We assume that q ^ p and let v ,, ... ,v  be the canonical 

correlations (cf. Anderson (1958)) associated with Y and X , 

The conditional generalized variance of Y given X is 

det 

det Y. 

y    yx 

E   E 
xy  x 

y«x det T. 
det(E -E r" E ) 

y  yx x xy 

It can be shown that, if X , Y and Z are three vectors 

of variates, 

det E   < det E  , 
yx -    y 

det  E = det(E - E        E-1  E        1 
yxz yx        yz'x Z'x zyx 

< det  E 
yx 

No single measure of association is sufficient to fully 

describe the relation between two sets of variates.  A complete 
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description would be based on the set of canonical correlations. 

However, as we need in the present development, a single number to 

describe such a relation, we shall restrict consideration to real 

functions of the canonical correlations. The following are a few 

of the measures of association which have been proposed in the 

1iterature: 

The vector coefficient of alienation between Y and X is 

Y  , where yx 

det I 

'yx        det I 
yx det I 

det Z    det Z 
y        x 

It can be shown that, 

(i)    Y2 = (1 - vV.. (1 - v2) ,  0 < Y2 < 1 • yx ^    r   v    q^ '   - 'yx — 

2 2 
(n)   YVV = 0 iff v = I for some I  . 

/ A Jo 

Y2X = 1 iff v2 = 0 for all I, i.e., Zyx =   0 

The vector multiple correlation coefficient between    Y    and 

X    is    R      , where yx 

R 

0      -Z 
yx 

-,       det I    Z'1! det      Z E 
2    _  yx x    xy _ [    xy        x 
yx "    det Z "      det Z    det Z 

y y x 

It can be shown  that 

 ■ ■—>.^—— ■MMBiMHM 
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(i) 
2 2     2        2 

R = v, . . . v  ,  0 < R  < 1 . 
yx 1    q    — yx — 

2 2 
R =0 iff v = 0 for some £ . 
yx £ 

2 2 
R = 1 iff v^ = 1 for all i ,  i.e., Y = BX a.e. 

2    2    M  2   M       2 
(iii)  R  + Y  = n v0 + n  (1 - v„) < 1 , 

yx  yx l=l   ^  .^ 
l   *J - ' 

and, in general, inequality holds, except when q = 1 . 

The trace correlation coefficient between Y and X is 

P  , where 
yx 

p2 = (1/q) tr Z    l~lZ    E-1 
yx    n    yx x xy y 

It can be shown that 

(i)    p2yx  = (l/q)(v
2 + 

(ii)    P
2

yx-0    iff vl 

2 2 
V      = 1 iff v„ 
yx 2. 

2        2 
+ v ) , 0 < p  < 1 

qJ     - yx - 

0 for all Ä, , i.e.,  I  = 0 
'       yx 

= 1  for all «. , i.e., Y = BX a.e. 

In the problems treated in the present chapter it is mathe- 

matically more convenient to study selection procedures in terms of 

2 
y" . When q = 1 , which is probably the most common case in prac- 

2 
tice, selecting in terms of y   1S equivalent to selecting in terms 

yx 

of R' 
yx 

■- i —i i —^^^<—^^^ mmam 
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4.2. S«l(ectin£ the best out of k populations with respect to the 

population vector coefficients of alienation 

Consider k (q + p.)-variate independent normal populations, 

fv1 

matrices 

, with unknown population means and unknown population covariance 

E    Z 
y.        y.x. 
i    ii 

E      E 
x.y.  x. 
ii   i 

(1 < i < k) 

We assume q £ min p. . Let the population squared vector coefficient 

of alienation between Y  and X  be 

det E, 
Y- i  det E det Z (1 < i < k) , 

2 2 2 
and let the ranked values of the    Y-    be    Ym  <  ••■  < Yn i   •     It 

i [1] - -    [k] 

is assumed that the experimenter has no prior knowledge concerning 

? 2 
the values of the   Y-   , or of the pairing of the   Yr-i    with the 

populations 

f   A 
1 

x1 (1 < i,j < k) 

When    q = 1  ,  selecting in terms of the    Y-    is equivalent to 

selecting in terms of the population squared multiple correlation 

coefficients,  as indicated in Section 4.1.    These selection problems 

(q  = 1)    have been considered by Gupta and Panchapakesan  (1969)  using 

the subset approach, and by Rizvi and Solomon  (1973)  using the 

indifference-zone approach.    Both papers provide different treatments 

mmtimitmmm mam 
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than ours;  in particular, our indifference-zone is distinct from 

Rizvi   and Solomon's, being perhaps more natural. 

Indifference-zone formulation 

The experimenter's  goal is  to select the population associated 

with    YQI   •    He specifies       {e*,P*}   ,  G* >  1   ,   1/k  < P*  <  1  , 

before experimentation starts.    If    PCS ({Z.}^     denotes  the probability 
K        1 

of a correct selection when  decision rule    R    is used,  we restrict 

consideration to decision procedures    R   which guarantee  the proba- 

bility requirement: 

inf PCS0({E.})   > P* 
n K     i      - 

where 

n = {(z1,....Ek)|e*Y2
fl] < Yj , j ^ [i]} . 

Single-stage "natural" selection procedures will  be used. 

We propose the following decision procedure: 

A sample of   N    independent vector observations. 

Y1   ^ a 
Cl   < i <_ k)     (1  < a < N)   , 

is taken from each population and one computes  fur    (1   j. i £ k)   , 

S.  =    I     (W1 -  WOCW1 - W.)   /n  , W.   =    I    W1^   , i        L,       a iJ y   a        ii L,    a a=l a=l 
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where n = N - 1 , and the sample squared vector coefficient of 

alienation, 

G. 
det S. 

i  det S det S 
y.    x. 

Rule R    :    Select  the population associated with 
 ^1_ 

2 2 2 2 
G^.,   = min   {G , ...,G, }   ,  as the one corresponding to    Yri-i   • 

Our task is to t;-i ■ -..^.u the smallest sample size    N    which 

guarantees  the probabilit/ requirement when    Rr      is used. 

Subset  formulation 

If the experimenter's goal  is to select a subset of popu- 

lations containing the one associated with    yf, i   .  he specifies    {P*}  , 

1/k  < P* <  1  , prior to the start of experimentation.    Then if 

rcSnCCE.})     has the same meaning as above, we restrict consideration 

to decision procedures    R   which  guarantee the probability requirement; 

inf      PCSp({E.})  > P* 
Y Y K       i       — 

We propose the following decision procedure: 

Rule Rf.»:    Include the population associated with    G. 
2     . 

in 

the  selected subset of populations if    G. 1 d*Gr ,   ,  where    d* > 1 

is a specified constant. 

Our objective then is to determine the smallest sample size 

N    which will  guarantee the probability requirement when    Rr:,    is 

employed. 

rtkMtf 
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It is clear that we may disregard the population means in 

what follows.  It will be seen (Theorems 4.1 and 4.2) that we may 

2   2 
assume, without loss of generality, that Y, 1 Y-  (j ^ 1) • 

Part of the following lemma is proved in Siotani, Chou and 

Cong (1971) . 

Lemma 4.1.  The ;i .d. of 

"1/2^ S-k
2. 

4 
is  multivariate normal with zero means, variances 4y.i.   ,  and 

zero correlations, where. 

0 < £. H tr E E   E  E    < q 
- i    y- y-x- x. x.y. — n 

^i ^i i i ii 

Proof. Since the squared trace correlation between Y. and X. 

i. 
is     p y.x. 

.i   i 
— ,   it  follows that     ()<_£.   < q  .    Using  Lemma 3.1  of 

Chapter ."5,   with the notation   introduced there, we have only to  compute 

the asymptotic variances.    The result  follows noticing that 

det E, 
MM i'  r       det   E    det   E 

x. 
i 

iiCZi)  =  {3aß(l0g det   Ei  '   l08 det  E      "  log ^et  Z     )> 

M-1 

,-1 

0 0 

0 0 

0       E 
x. 
i 

tr(*   (E )E  )2 =  2  tr E^E l'h =  21. 
111 yi  Vi Xi   ^i 

QED 
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Lemma 4.2.    The a.d.  of 

1 \n  r   lo^G;/G?)-lo8(Y?/Y2) 

2(Ä1+ij) 

is   standard multivariate normal  with 

t 
corr(Y   .Y^   ^ w      =  ^ m      ^ +  ^   ' 

Proof.     This  result follows  using Lemma 4.1   and Lemma 2.9 of Chapter 2, 

Theorem 4.1.     If the experimenter uses Rule R  .,  an asymptotic 

(N  -^ "j     lower bound on the    PCS       is 
a 

1/2, 
(4.2) inf PCS    >_V{x\  <_n f/!*     .UV 

Q a -1 2(2q)1/Z 

where  (Y. , j ^ 1( ij distributed as in (4.1), with w.. = 1/2 

ii  t j)   . 

Proof.    We shall  only outline the proof,  since it is very similar to 

the proof of Theorem 2.3. 

In     ft ,   if    Y7  '' Y-     (j   ^  1)   we have 

i/2 2    2 
2      2 i    n '  l0^y^y^ 

PCS    =   P(G;  <  Gt  ,  j  M)   =  P(Y     <  —47T- .   .1  M) 
1 -1 J 2()l1+Äj)

1/2 

>-P(Y\ < nl/2iog ;;2. j ^ i) 
J       2(^  +<l.) 

♦ f     ':9-("). ce.W      , 
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where    c  ^Cn)   = n ""(1/2) log e*   ,   and 
6 

(w..) ^w..)(c2(n)'---'ck(n)) 

.dyk. 

c.{n) ^.Md^l.) 1/2 
Cj   t  1)   . 

ind     f        )^y2'---'yk)     is the P-d-f-   of the     {Yi   • J  M)  • (w..) 

It is easy to check that 

3$ 
(w ) 
Ü- < o (j M) 3Ä 

Let    w*  = ^1/(£1+q)   ,    c(n]  =  cQi,ir\)/(i^q)  '*  .    Then it 

follows  from the  signs of the  last derivatives  that 

'(w. .)(c2(n|,'--'Ck(:n))   >   V*)^10'-'"^ r V*)   ' 

Now, 

(w*)   _     V*) 
3J, ^w* 

£1  fixed      ^1 9S w*   fixed 

3w*   (k-   )(k-2)     C
f
(n) C

r
(n) 

Tl 2    J       •••   >       f(-w*^cfn).c(n).y4."-.yk)dy4...dyk 

3c(n) 
3«.. 

c(nj        c(n) 
^"^  /      •••   /      f(w*)(c(n).yv...,yk)dy3...dy> 

When     c0+(n)   »- °°   ,  we have 

— 
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3$ 
-Vi<o ni1 

Therefore,   the   infimum of    PCS      occurs when    fc.  = q    (1 £ i 5 k)   .  QCD 

It  is not easy to display an  asymptotic  least favorable 

configuration of the parameters.    This  is so because when    Ä.  = q  , 

Y    = BX      a.e.,   and    Z      = BE    Bt  ,     I = BE      ,  implying that 
11 y. x.       '      y.x. x. r /    s 

1    1     'i 1     1 

2 
yT = 0 . However, it is possible to use a limit argument to show 

that the least favorable configuration of these parameters occurs 

2 2 2 
when Y- "*" 0 and Y-ZY, ■*• 6* • 

Theorem 4.2.     If RulelL- is used,  an asymptotic   (N ■> »)   lower bound 

on the PCS    is, 
a 

1/2 
(4.4) inf PCS^ iPfY    <- l-^S- .   j   /   1) 

{z.} a J ?r7n11/J 
1 :(2q) 

where     (Y.   ,   j  ^  1}    is as  in the previous theorem. 

Proof.     The result  follows as  in the proof of Theorem 4.1. 

To obtain an asymptotic  least  favorable configuration of the 

2 2 2 
parameters,  we must take    Y-   = Y-     (i  ^ j)   .  and let    Y-  -* 0    for all 

i   ,   so that     8,.   ->- q  ,  and then   (4.4)   follows. 

Lemma 4.3.     If    S    denotes the size of the selected subset when R 

if employed,  we have 

k                  n1/2log(d*Y?/Y?) 
(a) E   (S|{E   })   =    I    PCyJ <   I    1       .  i ^ j) 

i=l 3 2Cpi+Pj)
1/2 

^^^^^—ggH^m-d. ^^mummlmmlmmm^^ 
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where the    {Y •   ,   i   / j}    are distributed as  in   (4.1) with    1    replaced 

by    i   . 

(b) sup H   (S|{X.})  = k    which occurs when    Y.   = B.X.     a.e.,  and 
a i ill 

i 

' B.E    B1      B.i: 
i   x.   1 IX. 

i i 

x.   i 
i 

in which case    GT =  0    a.e.     (1 £ i  <^ k) 

Proof.    The result  is a consequence of previous developments. 

4.3.    Selecting the best subclass of predictors   (single population) 

Consider a  (q+p)-variate normal population, with unknown 

population mean vector and unknown population covariance matrix 

E = 

E E 
y      yx 

I    xy        x 

Let    XJ     (1 1 j £ k)    be    k    subclasses of    X    of size    p.   , no one 

of which   is entirely  contained in the other.     Let     E.    be the popu- 

lation covariance matrix of    X"1     (1 f. j 1 k)   .    The following is a 

possible covariance matrix in the present setting: 
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Denote the covariance matrix of 

lA M 
by    1- 

y     yj 
,  and 

let the population conditional generalized variance of   Y given 

XJ    be 

X.  = det  Z 
J y.r^i "^i" 

Lot the ordered values of the X. be X... < ... < Xri . . We assume 
J      [1] -   - [k] 

ues that the experimenter has no prior knowledge concerning the val 

of the X. , or of the pairing of the X,., with 

Y   (1 < ij < k) . 

In the present  context,  selecting in terms of the conditional 

generalized variances,     X.   ,  is equivalent to selecting in terms of 

the squared vector coefficient of alienation between    Y   and    X    , 

since    Y    is a common  factor to each pair 
LX 

k-       (1  < i < k)   .    When 

q = 1    we are equivalently selecting in terms of the multiple 

mm -   -  ^^^M^^. mmm^^^mmmm^^mm 
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correlation coefficients between    Y    and    X      (1 £ i £ k) .    Ramberg 

(1969)  considered the problem    (q =  1)    of selecting the subclass 

X      associated with    X ,  for some special  cases of    I , and deve- 

loped lower bounds on    PCS    , using an indifference-zone approach. 
a 

Our bound (Theorem 4.3) is sharper than any of his, and we show that 

it is attained in some important cases. 

A particular case cT the theory we develop is the problem 

of selecting the "best" (corresponding to ^r-ii) subclass of X of 

size t , for which there are (") possible decisions. Arvensen 

(1971) devised a Bayesian procedure for a subset approach formulation 

of this problem, when q = 1 . He used asymptotic distribution results 

of Siotani (1971), but his results are very cumbersome. Theorems 

4.5 and 4.6 give a simple counterpart to his theory. 

Indifference-zone formulation 

The experimenter's goal is to select the subclass XJ 

(1 <_ j £ k) associated with Xr,, . He specifies {6*,?*} , 9* > 1 , 

1/k < P* < 1 , prior to experimentation. Then, if PCS (E) denotes 
K 

the probability of a correct selection when decision procedure R is 

employed, we restrict consideration to procedures R which guarantee 

the probability requirement: 

inf PCSD(Z) > P' 

where, 

mm 
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fi = f^len^j < xj , j / [i]} . 

We propose the use of the  following single-stage "natural" selection 

procedure for this  indifference-zone goal: 

A sample of    N    indepondcnt vector observations. 

(1 1 a 1 N) 

is taken.     Let, 

' Y 

zj = 
a 

a (I <_ a <_N)     (1 <_ j   <_ k)     correspond to 

For each (1 ± j ± k)    compute, 

01=1 

S S . 
y yj 

s. s. 
i jy 3 ) 

N 

J       a=l 

where    n = N -  1  ,  and the sampie conditional generalized variances. 

V.   H det S    .  = ^L|^ . 
J yj      det S. 

Rule RC3:    Select the subclass    If?     (1 1 j 1 k)    associated 

with    V,.,   = miw  {V , ...,V. } , as the subclass corresponding to 

[1]   * 

Our objective is to determine the smallest sample size    N 

which will guarantee the probability requirement when    Rr_ is used. 

    - ..    -_. — —..  —  j--^-.  
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Subset  formulation 

If the experimenter's goal is to select a subset of subclasses 

of    X ,    X.     (1 1 j  1 k)   ,  which contains the subclass associated 

with    A        ,  he  specifies    {P*} ,    1/k < P* < 1   ,  prior to experi- 

mentation.    Then,   if    PCSp(Z)    is as defined above, we limit considera- 

tion to decision procedures    R   which guarantee the probability 

requirement: 

inf PCSR(E)  > P*  . 
E 

We propose the following "natural" procedure for this subset 

goal: 

Rule RC4:     Include the subclass    X3     (1  < j  < k)    in the 

selected subset of subclasses if   V. £ c^*vrii   »  where    d* > 1    is a 

specified constant. 

Our objective  is to determine the smallest    N    which will 

guarantee the probability requirement, when    R   .    is used. 

It is clear that the population means may be ignored in the 

following developments.     It will follow from Theorems 4.3 and 4.5 

below that we may assume, without loss of generality,  that 

X1 < A.     (j  / 1)   . 

Lemma 4.4.    The a.d.  of 

"1/2(vi-v-^-v 

is multivariate normal,  with zero means,  variances    2qA.   ,  and 

I«II ii  it  m 
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covariances IX.X.ü..   ,  where St.. >_Q 

Proof. We employ Lemma 3.1 of Chapter 3, with its special notation. 

In order to compute the variances, we note that, 

f.V) 

yn 

det  i:J/det  E.   , 

O  o(log det Z]  - log det Z.)} 
ats j 

C^)"1 

0        0 

-1 
0     z, 

3  J 

Hence, 

tr^.CDE)     =tr(l - 

Z.   Z. I 
I   J   3y     Pj j 

)2  =  q 

;uid the variances equal 2qX.  (1 £ j £ k) . 

The covariances are compuced similarly, since we define. 

2XiX tr ^CW.CHE =  2XiXi£.. 

We have only to show that    I. .  >_ 0 . Since    <{>.(E)     can be easily shown 

to be symmetric nonnegative definite,  it follows that 

£..  = tr E4.. (!)£({». (E)  ^ 0  . QED 

Lemma 4.5.    The a.d.  of 

1       1/2  r  ^gCVj/V )-iog(X /x ) 
(4-5) Y. =n^    (       J/l —TTT^ i    0^) 

2q*"-(l-£1.) 
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is standard multivariate normal with 

1_£  _£  +£ 

corrCY^.y1) =-  Y^ =    ^ ^ l/2 (i ^ j) 

Proof. One uses Lemma 4.4 and Lemma 2.9 of Chapter 2. 

Theorem 4.3. If the experimenter uses Rule Rr_ , an asymptotic 

(N •> «) lower bound on the PCS  is 
a 

(4.6) inf PCSa > ra]l   "       iyl *- .i*V. ■x!h 
2^ 

where the    (Y.   ,  j ^ 1}    are as in  (4.5) with    y..  = 1/2    (i / j)   . 

Proof.    This theorem is an immediate consequence of Lemma 4.5 and 

Theorem 2.3 of Chapter 2. 

Lower bound (4.6)  turns out to be a sharp bound for a very 

wide class of problems.     Indeed,  the only requirement is that each 

subclass    X     have a variate    x.    of its own.    More precisely,  for 

d 1 j 1 k)   .  there exists    x.    such that    x. £  X*1   , but    x. ^ X 

(i ^ j)   .    When this is the case, we will display an asymptotic 

(N -> »)    least favorable configuration of    E  .    In order to do so, 

let    y    be any fixed component of    Y    and define. 

a   .  = cov(y,x.)   ,    a. .  H COV(X,,X.)     (1 < i,i  < k) 

Theorem 4.4.    An asymptotic     (N -> ">)    least favorable configuration 

of   E , when each    XJ    has at least one variate of its own,  is: 

■■ -     -    ;-  '  • ..*.^:.-^. 

^mmmmmmtimtmm 
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(i)    a =■■..--  1     (1 < j < k) 
yy  JJ    »- - J - ^ 

"»    V-(>-ölir)1/2 

(iii) - = (.-f)1/2  U>.) 

r' i ir't a      _               l-c/k-c/0*k 
I IVJ 

lj       Cl-e/k-e/e*k+t-2/e*k?)1/2 

fv) l-2E/k        ,.    •   ,   ,, aij = i^7r    Ci.J > 1) 

(vi) a^l other diagonal elements o Z      equal to 6 

(vii)  all other diagonal elements of I      equal to 1 , 

(viii)  all other elements of I equal to zero. 

Finally, we take e sufficiently small and let 6 ->■ 0 . 

Proof.  In order to show that T.    so defined is positive semi-definite, 

three conditions must be satisfied; 

o... ^- l/(k-2)       (i,j  >   1) 

2 
a..-a   . 

1J
2  1J 1-  l/(k-2)       (i,j  >  1) 

2 2 2 
a. .-a  .-(a,.-a  .a   .)   /(1-a  .) 
^ /J  ^ y1 v—^i- i/ck-2)   cij > i) 
l-a^.-fo-.-a  ,0   .)/(l-a ,) 

yj      lj    yl yj"        ylJ 

A tedious, but straightforward,  computation shows that these conditions 

are satisfied when    e    is sufficiently small.    Next, we observe that. 

6* x, = ^(T^'^ci-o2,) = x. * e'^'^ii-a2.)   (j > i) 
1 l      y.r j yj 

J 
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Finally, another tedious calculation shows that, 

I..  = (l-a2,)'1(l-o2.)'1{(q-l)6+(l-a2.-o2.+a .a .a..)2} . 

2  2 
Since it may be checked that (l-o .-a .+0 .a .a..) = 0 , as S -*■ 0 , 

yi yj yi yj ir 

we have I.. -*■ 0 ,  for all i,j . QEI) 

When q = 1 , the limit argument 6 -*• 0 is unnecessary. 

Theorem 4.5.  If Rule R_4 is used, an asymptotic (N •+ ") lower bound 

on the PCS  is 
a 

1/2 
(4.7) inf PCJ   IPIY1 < "      \0& d*    ,   j / 1)   , 

a J 2q1/J 

where the    {y.   ,  j ^ 1)    are as in Theorem 4.3. 

Proof.    The proof is similar to the proof of Theorem 4.3. 

Theorem 4.6.    Using the same notation as in Theorem 4.4, an asymptotic 

(N ->■ <»)     least  favorable configuration of    Z  ,    when each    Xr    has 

at least one variate of its own,  is: 

(i) 0yy = ajj = 1    (1 -:i -k) 

(ii)        ay. =  (1 - e/k)1/2    (1 < j  < k) 

,.... l-2e/k      ,.   .^ ,. (m)       a..  = ■; jf-      (i,j  > 1) v      ' ij       1-e/k J 

(iv)        all other diagonal elements of   I      equal to   6      , 

(v) all other diagonal elements of   E      equal to    1  , 

(vi)        all other elements of   E    equal to zero. 

Finally, we take    e    small and let    6 -»■ 0  . 

J 
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Proof.    This proof is similar to the proof of Theorem 4.4.    The 

conditions that    Z    be positive semi-definite are: 

Ojj 1- l/(k-l)     (i,j  > 1) 

7 

l-o^. 
yj 

which can be shown to be satisfied when e is sufficiently small, 

Moreover, 

xj = ö-^AiV;.) = x.   (i M) 

Finally,   for    (i / j)   , 

I 
1J yi ^ yj' ^M ^ l yl yj yj      yj       j j . 

because (l-o .-a +a .a .o..) = 0 and 6 -♦• 0 . QED 
yi yj yi yj ir 

When q = 1 , the limit argument 6 -> 0 is unnecessary. 

Lemma 4.6.  If S denotes the size of the selected subset of subclasses 

when K        is used, we have 

(a)    E ' 
k       n-'-logCdn /A ) 

.CSID = I POT <   1/2      J /  . i M: 
i=l   J  2q1/2(l-£^)1/2 

where the {Y. , i / j) aie distributed as in (4.5) with 1 replaced 

by i . 
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(b) sup Ea(S|5:)  = k    when    Y = BX    a.e.,  in which case, 

Sy.j  = 0    a-e.    (1 1 j Ik)   . 

Proof.    Consequence of previous developments. 

J 
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